
Representation theory from lie algebra
perspective
Sunaina Pati

July 2, 2024

§1 Homorphism theorems
Definition 1.1. Let L be a Lie algebra and let V and W be L−modules. An L−module
homomorphism or Lie homomorphism from V to W is a linear map θ : V → W such
that θ(x · v) = x · θ(v) for all v ∈ V and x ∈ L.

An isomorphism is a bijective L−module homomorphism.

Remark 1.2. This makes sense because x · v ∈ V and θv ∈W . So x · θ(v) is also in W . And
it is using that it is L−module.

§2 Schur’s lemma

Theorem 2.1. Let L be a complex lie algebra and V be a finite dimensional simple L−
module where θ : V → V is an L−module homomorphism. Then θ = λidV for some λ ∈ C.

Proof. Since we are working in C, let λ ∈ C be an eigenvalue of θ. Let v ∈ V be the
corresponding eigenvector. So

θ(v) = λv =⇒ v ∈ Null(θ− λidV ) =⇒ {0} = Null(θ− λidV ) ⊂ V is a submodule

V = Null(θ− λidV ) =⇒ ∀u ∈ V , θ(u) = λ(u) =⇒ θ = λidV .

Lemma 2.2. Let L be a complex lie algebra and abelian. And V be a simple finite dimensional
module. Then dim(V ) = 1.

Proof. We define θx : V → V and θx(v) = x · v. Note that θx : V → V is an L−module
homorphsim. Note that

y · θx(v) = y(x · v) = x · (y · v)− [x, y] · v = θx(y · v).

Since L is complex and θx is V → V =⇒ θx = λxidV . So x · v = θxv = λxv =⇒
spanv ⊂ V is submodule.
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§1 Cartan’s criteria for solvability

Theorem 1.1. Suppose L is a complex solvable lie algebra. Suppose L is a lie algebra. Then

L is solvable ⇐⇒ ∀x, y, z ∈ L, k([x, y], z) = 0.

Proof. Suppose L is solvable. Then consider ad : L → gl(L). Note that im(ad) is a
quotient and homomorphism of L, hence solvable. So there exists a basis of L such
that ∀w ∈ L, adw is upper triangular matrix. Hence [adx, ady] is upper triangular
matrix. Hence [adx, ady]adz is is upper triangular matrix. So Tr([adx, ady]adz) = 0 =⇒
k([x, y], z) = 0.
Suppose ∀x, y, z ∈ L, we have k([x, y], z) = 0. We will show that L′ is nilpotent. Note
that w = [x, y] ∈ L′ =⇒ k(w, z) = 0. We know that by jordan decomposition,
adw = (adw)d + (adw)n = Wd +W − n. But note that tr(W ·Wd) = tr(Wd ·Wd) =
|λ1|2 + · · ·+ |λm|2 and λi is eigenvalue of W . But tr(W ·Wd) = tr(ad[x,y] · adwd

) = 0.
So the eigenvalues are 0. So L′ is nilpotent. So L is solvable.

§2 Cartan’s criteria for semi simplicity
Definition 2.1. W⊥ = {x ∈ W |k(x,w) = 0∀w ∈ W} where k is the killing form and
W is subspace of lie algebra L.

Theorem 2.2. If I is ideal of L then I⊥ is ideal of L.

Proof. Let x ∈ L and j ∈ I⊥. We want to show [j,x] ∈ I⊥. We want to show

tr(ad[j,x] · adi) = 0∀i ∈ I.

But we know that
tr([a, b]c) = tr(a[b, c]).

So
tr(ad[j,x] · adi) = tr(adj · ad[x,i]) but [x, i] ∈ I =⇒ tr(adj · ad[x,i]) = 0.

Theorem 2.3. Suppose L is a lie algebra over C. Then L is semi-simple ⇐⇒ k is non-
degenerate. That is if x 6= 0 =⇒ k(x,x) 6= 0.
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Proof. Suppose L is semi-simple.So rad L is 0. So there is no solvable ideal of L. Note that
L ⊂ L is an ideal. Now take x, y, z ∈ L⊥ =⇒ [x, y] ∈ (L⊥)′. Note that k([x, y], z) = 0
as [x, y] ∈ L. So L⊥ is solvable (by the criterion) and ideal. So L⊥ = 0. Hence k is
non-degenarate.
Other way: Say L is not simple =⇒ it has solvable ideals. Take 0 6= I ⊂ L a solvable
ideal =⇒ ∃N ∈ N such that I(N) = 0 and I(N−1) 6= 0. Let A = I(N−1). Now ∀y ∈ I
we have

adaadxada(y) = [a, [x, [a, y]]] = 0 =⇒ (adaadx)
2 = 0

=⇒ ada · adx is nilpotent =⇒ tr(ada · adx) = 0 =⇒ k(a,x) = 0 =⇒ k(a, a) = 0.

§3 Why is it called semi-simple
Now, we will understand why it is called semi-simple!

Theorem 3.1. Let L is a lie algebra over C. Then L is semisimple =⇒ ∃ simple ideals
L1, . . . ,Ln ⊂ L such that L = L1

⊕
· · ·

⊕
Ln.

Proof. We do induction on dim L. Base case: dim L = 1 =⇒ L is simple. Say for all
lie algebras of dim < n, the statement holds and dim L = m. Let I ⊂ L be ideal of L
and minimal dimension. If I = L then L is simple. If I 6= L then we have the following
claim.

Claim 3.2.
L = I

⊕
I⊥, I, I⊥ are semi-simple .

Proof. Note that

x 6= 0 ∈ I ∩ I⊥ =⇒ k(x,x) = 0 =⇒ k is degenerate =⇒ x = 0.

Note that I, I⊥ commute.

[x,w] ∈ I, I⊥ =⇒ [x,w] = 0∀x,w ∈ I, I⊥.

Note that L = I + I⊥ as I → I → C is isomorphism. So V → I → C is surjective and
kernel is I⊥. And dimensions follow! They are semi-simple, because suppose J ⊂ I is a
solvable ideal. Then

[J , I⊥] ⊂ [I, I⊥] = 0 =⇒ J ⊂ I⊥ and solvable.

Not possible. So both are semi-simple.

Now use induction on I⊥.
Other direction: Suppose

L = L1
⊕
· · ·

⊕
Ln.

Let I = radL. Let Ik = [I,Lk]. Note that Ik ⊂ Lk a solvable ideal. So Ik = 0. So

[I,L] = [I,L1
⊕

. . . Ln] ⊂ I1
⊕
· · ·

⊕
In = 0

=⇒ I ⊂ Z(L) ⊂ Z(L1)
⊕
· · ·

⊕
Z(Ln) = 0.
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We are dealing with lie algebras

§1 Weights
Definition 1.1. A weight for a lie subalgebra A of gl(V) is a linear map λ : A→ F such
that

Vλ = {v ∈ V : a(v) = λ(a)v∀a ∈ A}

Note that this is the generalisation of eigenvectors.
Note that Vλ forms a vector subspace of V as if v,w ∈ Vλ then

a(αv+ βw) = a(αv) + a(βw) = αa(v) + βa(w)

αλ(a)v+ βλ(a)w = λ(a)(αv+ βw).

Problem 1.2. If a, b : V → V are commuting linear transformations and W is the kernel
of a, then W is b−invariant.

Proof. Let w ∈W , then

a(bw) = b(aw) = 0 =⇒ bw ∈W .

§2 The invariance lemma

Lemma 2.1. Suppose that A is an ideal of a Lie subalgebra L of gl(V ). Let W = {v ∈ V :
a(v) = 0∀a ∈ A}. Then W is an L-invariant subspace of V .

Here we use the famous trick that ax = xa− [a,x]

Proof. Let w ∈W and x ∈ L. We have to show that a(xw) = 0∀a ∈ A. Note that

a(xw) = x(aw) + [a,x](w) = 0.
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Theorem 2.2 (Invariance lemma). Assume that F has characteristic zero. Let L be a Lie
subalgebra of gl(V ) and let A be an ideal of L. Let λ : A → F be a weight of A. The
associated weight space

Vλ = {v ∈ V : av = λ(a)v∀a ∈ A}

is an L-invariant subspace of V .

Proof. If y ∈ L and w ∈ Vλ then y(w) ∈ Vλ. That is, to show that ∀a ∈ A, a(y(w)) =
λ(a)(y(w)).
Again, using the above trick, we get

a(yw) = y(aw) + [a, y](w) = y(λ(a)w) + λ([a, y])(w) = λ(a)yw+ λ([a, y])(w).

So it is enough to show λ([a, y])(w) = 0.
Consider U = span{w, y(w), . . . , ym−1(w)} such that they are linearly independent and
hence w, y(w), . . . , ym−1(w) are basis of U .

Claim 2.3. Let z ∈ A, then wrt the basis w, y(w), . . . , ym−1(w), z is represented as
an Upper triangular matrix with diagonal entries λ(z).

Proof. We prove it by induction on columns (from left to right). For our base case, it is
true as zv = λ(z)v. For yw, note that

z(yw) = y(zw) + [z, y]w = λ(z)(yw) + λ[z, y](w)

which is the second column.
Say it is true till k th column. Hence,

z(yr−1w) = λ(z)(yr−1w) + u,u ∈ span{w, y(w), . . . , yr−2(w)}.

So k+ 1th colum will be

z(yrw) = zy(yr−1w) = (yz + [z, y])(yr−1w) = yzyr−1w+ [z, y]yr−1w

= λ(z)(yrw) + yu+ [z, y]yr−1w

Since [z, y] ∈ A, we get [z, y]yr−1w = λ([z, y])yr−1w ∈∈ span{w, y(w), . . . , yr−1(w)}.
So induction works.

Now take z = [a, y]. Note that the trace of the matrix of z acting on U is mλ(z). U is
invariant under the action of a ∈ A, and U is y-invariant by construction. Note that
trace is 0. So λ(z) = 0 as char is 0. So done. We proved it.

Problem 2.4. Let x, y : V → V be linear maps from a complex vector space V to itself.
Suppose that x and y both commute with [x, y]. Then [x, y] is a nilpotent map.

Proof. Note that if λ be an eigen value of the linear map [x, y]. Let W = {v ∈ V :
[x, y]v = λv} be the eigenspace. Note that it is a subspace of V .
Let L be the lie algebra of gl(V) spanned by x, y, and [x, y]. Note that span {[x, y]} is
an ideal of L. So the invariance lemma implies that W is invariant under L. So it is
invariant under x and y.
Pick any basis of W and let X and Y be the matrices of x and y wrt the basis. So
[x, y] = XY − Y X. But every element of W is an eigenvector of [x, y] with eigenvalue
λ.
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Claim 2.5. XY − Y X is a scalar matricx with scalar λ wrt the basis

However, taking trace, gives us

0 = λdimW =⇒ λ = 0.

Claim 2.6. If a linear operator φ : V → V on a vector space is nilpotent, then its
only eigenvalue is 0 And it similarly if only eigenvalues are 0 then it is nilpotent.

Proof. Let A be a nilpotent, so An = 0 for some n. Now let v be an eigenvector: Av = λv
for some scalar λ. Now we get

0 = Anv = λnv =⇒ λ = 0.

Other direction: Suppose that all the eigenvalues of the matrix A are zero. Then the
characteristic polynomial of the matrix A is

p(t) = det(A− tI) = ±tn =⇒ 0 = p(A) = ±An =⇒ A is nilpotent .

So using the above claim, we are done.

§3 Engel’s theorem
We will try to prove Engel’s theorem. But what does it say? But first we state a common
result in linear algebra.

Theorem 3.1. Let V be a n dim vector space. And let x : V → V be a nilpotent map. Then
there exists a basis of V is which x is a Upper triangular matrix.

Proof. Since x is nilpotent, ∃N ∈N such that xN = 0. Now 0 6= v ∈ V =⇒ xN (v) = 0.
Let m be smallest m such that w = xm−1v 6= 0. So x(w) = 0 =⇒ w ∈ Null(x).
If n = 1. Then V = span(w) as w 6= 0. So the transformation x’s matrix wrt w is [0].
Say the statement is true for any k dimensional vector space. We will show that it is
true for any k+ 1 dimensional vector space.
Let W = spanw which is subspace of V . So V /W is k dimensional.
Note that x is nilpotent as x = x+W and

(x)n = (x+W )n = xn +W .

And xn = 0 ∈ V ,W ⊆ V . So (x)n = 0 +W . Hence nilpotent.
So, we apply induction hypothesis to V /W . We get a basis B = {v1 +W , . . . , vk +W}.
Note that x(vj +W ) = α1v+ · · ·+ αj−1vj−1 +W . Take the basis B = {w, v1, . . . , vk}.
We get x(vj) = α0w + · · ·+ αj−1vj−1. And done! It satisfies the Upper triangular
matrix!
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Theorem 3.2. Let V be a vector space. Suppose that L is a Lie subalgebra of gl(V ) such
that every element of L is a nilpotent linear transformation of V . Then there is a basis of
V in which every element of L is represented by a strictly upper triangular matrix.

Proof. But before proving this, we prove the following lemma.

Lemma 3.3. Suppose that L ⊂ gl(V ) is such that every x ∈ L is nilpotent. Then ∃0 6= v ∈ V
such that x(v) = 0∀x ∈ L.

Proof. We do induction on L. Say dim L is 1. Then by the above we showed that there
is some non zero v ∈ V such that z(v) = 0. But L is spanned by z. Then done.
Say it is true for all lie algebra of dimension upto k. Suppose dim L = k+ 1.

Claim 3.4. There is an ideal I ⊂ L such that dimension of I is k.

Proof. Let A be maximal lie subalgebra of L. Consider L/A.
Consider the linear map ad : A→ gl(L/A) such that

ada(x) = [a,x] +A.

Claim 3.5. ada is a lie homorphism.

Proof. To show it is a homorphism, note that

ad(αa+ βb) = αad(a) + βad(b).

Note that
ad(αa+ βb)(x) = [αa+ βb,x] +A = α[a,x] + β[b,x] +A

= αad(a) + βad(b).

To show it is a lie homorphism, we have to show

ad([a, b]) = [ad(a), ad(b)].

Or show
ad([a, b])(x) = [ad(a), ad(b)](x)

But LHS is [[a, b],x] +A and RHS is

(ad(a) · ad(b)− ad(b) · ad(a))(x)

= [a, [b,x]]− [b, [a,x]] +A = [a, [b,x]] + [b, [x, a]] +A = −[x, [a, b]] +A = [[a, b],x] +A.

So
img(ad) ⊂ gl(L/A) =⇒ dim img(ad) ≤ dim(A) < dimL = k+ 1.

So dim img(ad) ≤ k and a ∈ A is nilpotent =⇒ ad(a) is nilpotent =⇒ ad(a) is nilpotent.
So img(ad) satisfies induction hypothesis. Hence there exists y+A 6= 0 ∈ L/A such that

(ad)a(y+A) = 0∀a ∈ A =⇒ [a, y] +A = 0 =⇒ [a, y] ∈ A∀a ∈ A.

Note if A ⊂ A
⊕
Fy ⊂ L then since A has maximum dimension we get that A

⊕
Fy =

L =⇒ dimA = dimL− 1 and note that A is ideal here.
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So L = A
⊕
Fy. So dim(A) = k. We apply induction hypothesis on A. So there exist

0 6= u ∈ V such that a(u) = 0∀a ∈ A.
Let W = ∩a∈ANull(A). Note u ∈W .
By invariance lemma, W is invariant under L. So y(W ) ⊂W . But y is nilpotent. So is
y restricted over W is nilpotent.Hence ∃v ∈W such that y(v) = 0. Since

L = A
⊕

Fy =⇒ x = a+By, a ∈ A,B ∈ F =⇒ x(v) = a(v) +By(v) = 0∀x ∈ L.

We use induction on L. If dim L = 1. Then L is spanned by a vector x. Then x is
representable as a Upper triangular matrix. So done.
Suppose ∀ lie algebra of dim ≤ k, the statement is true. Say dim L = k+ 1.
We showed that ∃0 6= u ∈ V such that x(u) = 0∀x ∈ L. Set U = span{u}. And let
V = V /U . Consider the map L→ gl(V ) such that x ∈ L→ x.
Note that the image of the map is subset of gl(V ). Moreover V has dimension k. So
∃ basis of V such that all x are upper triangular. Hence {v1 + U , . . . , vk + U}. Then
{u, v1, . . . , vk} is a basis of V . As x(u) = 0, we get that x is strictly upper triangular.

§4 second version of Engel’s theorem

Theorem 4.1. A Lie algebra L is nilpotent if and only if for all x ∈ L the linear map
adx : L→ is nilpotent.

Proof. If L is nilpotent then ∃N ∈N such that LN = 0. Then [[[. . . [x[x, . . . [x, y] . . . ] ∈
LN = 0 =⇒ (adx)N−1(y) = 0 =⇒ (adx)N−1 = 0.
Let L = ad L. ad : L → gl(L). Every element of L is nilpotent. So ∃ basis such that
ad x is upper triangular strictly.
So L is nilpotent. (as when we commute two Upper triangular matrix, we get 2nd upper
diagonal to be 0s and so on). Since L is nilpotent, then so is L/Z(L) ∼= L. Hence L is
nilpotent.

Remark 4.2. Converse of Engel’s theorem is not true. Let I denote the identity map in
gl(V ). The Lie subalgebra Span {I} of gl(V ) is nilpotent.It is (trivially) nilpotent as it is
spanned by one vector and [x,x] = 0. In any basis of V , the map I is represented by the
identity matrix, which is certainly not strictly upper triangular.

§5 Lie’s theorem

Theorem 5.1. Let V be an n-dimensional complex vector space and let L be a solvable Lie
subalgebra of gl(V ). Then there is a basis of V in which every element of L is represented
by an upper triangular matrix.

Claim 5.2. Suppose V ≡ Cn and x ∈ gl(V ). Then ∃ a basis of V such that x is
upper triangular matrix.

Proof. We begin with the claim
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Claim 5.3. x has an eigenvector

Proof. Take any 0 6= v ∈ V and consider{v,xv,x2v, . . . ,xmv} where m is the minimum
such that the vectors are linearly dependent. So ∃α0, ,̇αm such that αm 6= 0. We can
factor over C. So

αm(x− λ0I) . . . (x− λmI)v = 0.

Take k to be minimum such that w = (x−λk+1I) . . . (x−λmI)v = 0. Now, (x−λkI)w =
0 =⇒ xw = λkw.

Now we try to prove by induction on dimension of V . Say it is true for all dimensions
less than or equal to k. Let w ∈ V be an eigenvector of x with value λ.
Consider x : V → V and x : V /Cw → V /Cw. And x(v + Cw) = x(v) + Cw. So
dim(V /Cw) = k. We apply induction hypothesis to V /Cw. Then there is a basis
{v1 + Cw, . . . , vk+1 + Cw}. Then the basis of V as {w, v1, . . . , vk+1} works.

Lemma 5.4. Let V be a non-zero complex vector space. Suppose that L is a solvable Lie
subalgebra of gl(V ). Then there is some non-zero v ∈ V which is a simultaneous eigenvector
for all x ∈ L.

Proof. We do Induction on dim L. If 1 then say it is spanned by x. Since x ∈ gl(v) it
has an eigenvector. So done.
Suppose the statement holds for all lie algebra of dim k and dim L = k+ 1.
Since L is solvable =⇒ L(N) = 0 for some N ∈ N. Note L′ ⊂ L and L′ 6= L else
L(N) = L∀n.
Choose a subspace A of L which contains L′ and is such that L = A

⊕
Span{z} for some

z ∈ L.

Claim 5.5. A is ideal of L.

Proof.
x ∈ L, a ∈ A, [x, a] ∈ [L,L] = L′ ⊂ A′.

dim A = k, A is solvable. By inductive hypothesis =⇒ ∃w ∈ V w is eigenvector for all
a ∈ A.

λ : A→ C

aw = λ(a)w

Vλ = {v ∈ V |a(v) = λ(a)v}

So by invaraince lemma, we get that Vλ is Linvariant. So x(v) ∈ Vλ∀v ∈ Vλ. So ∃u ∈ Vλ
which is eigenvector of z ∈ V . Let z(u) = µ(u). ∀x ∈ L,x = α+ βz

x(u) = α(u) + βz(u) = λ(α)u+ βµ(u)∀x.

So done!

So now the main proof.
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Proof. We do induction V . For dim 1 it is good. Say true for k. Now for k + 1. It is
essentially same as engel’s theorem.
Find w ∈ V such that w is eigenvector for all x ∈ L.

=⇒ x(w) = λ(x)w,λ : V → C.

Define
x(V + Cw) = x(v) + Cw.

Consider Im(x) ⊂ gl(V /Cw). So we use induction hypothesis, get a basis {v1 +
Cw, . . . , vk + Cw}. So let the basis be {w, v1, . . . , vk}.
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