
Cyclic Codes for Error Detection

Sunaina Pati, Chennai Mathematical Institute, Chennai

April 5, 2025

1

2

Abstract

This talk is based on Peterson and Brown’s seminal paper “Cyclic Codes for Error Detection.” I
will introduce cyclic codes, a class of linear codes with the defining property that any cyclic shift
of a codeword is also a codeword. The talk will cover their algebraic structure, key properties,
and how these features enable efficient encoding and error detection. I will also explore BCH
codes, their decoding capabilities, and how cyclic codes can be designed to detect single, double,
triple, and burst errors. Examples and theorems from the paper will be discussed in detail to
highlight both theoretical insights and practical applications.

3

Contents

1 Introduction 5
1.1 Example: Repetition Code . 8

1.1.1 Distance of the Code . 8
1.1.2 Error Correction Example . 8

2 Linear Codes 9
2.1 Interpretation of Parameters . 9
2.2 Example: Repetition Code . 9
2.3 Weight of a Vector . 10
2.4 Minimum Distance and Weight . 10
2.5 Membership Detection Using Parity-Check Matrix . 10

2.5.1 Constructing the Matrix H . 10
2.5.2 Computing the Matrix Form of H . 11
2.5.3 Conclusion . 11

2.6 Generator Matrix . 11
2.7 Example: [7, 4, 3] Hamming Code . 12

3 Properties of Hamming Codes 12

4 Cyclic Codes 13
4.1 Codewords as Polynomials . 13
4.2 Dimension of a Cyclic Code . 15

4.2.1 Parity Check Matrix . 15

5 BCH Codes 15
5.1 Parity Check Matrix for BCH Codes . 16
5.2 Distance of a BCH Code . 17

6 The Decoding Problem 17
6.1 Locator and Correction Polynomials . 17

6.1.1 Why These Polynomials Help . 18
6.2 Computing the Polynomials . 18

6.2.1 Justifying the Geometric Expansion . 19
6.3 Recovering u(Y) and v(Y) . 19

7 Error Detection Using Generator Polynomials 21
7.1 Detection of a Single Error . 21
7.2 Computing the Exponent . 22

8 Burst Error Detection and Correction 23
8.1 General Burst Error Detection in Cyclic Codes . 23
8.2 Detection of Multiple Bursts . 24

9 Fire Codes 25
9.1 Definition . 25
9.2 Parameters and Capabilities . 25
9.3 Burst Error Detection Capability . 25

4

10 References 26

5

1 Introduction

Suppose two parties, Alice and Bob, wish to communicate over a channel that may be unreliable—
that is, parts of the message may get corrupted or altered during transmission. To ensure robust
communication, we want the recipient to be able to detect such corruption, and ideally, recover the
original message even in the presence of errors.

We assume that the channel allows the transmission of strings over a fixed finite alphabet. This
alphabet could be a finite field (e.g., Fq), binary symbols (bits), or even characters from the English
alphabet.

This brings us to two central goals in the design of such communication systems:

• Error detection: Identifying whether the received message has been corrupted.

• Error correction: Reconstructing the original message despite some level of corruption.

In many practical scenarios, the message that Alice wishes to send may be written in one
alphabet—say, English—while the communication channel supports a different alphabet—such
as binary strings. In such cases, we need a systematic way to convert messages from the source
alphabet to the channel alphabet. This is typically done by encoding the message into blocks of
symbols over the channel alphabet.

For instance, when converting English text to binary, we might use ASCII encoding. Each
character is represented as a fixed-length binary string, i.e., a block of bits. These binary blocks are
then transmitted over the channel.

Naturally, not every possible block of bits corresponds to a meaningful message. In general,
only a subset of all possible strings is used for encoding valid messages. This leads us to the formal
notion of a block code.

Definition. Let Σ be the fixed finite alphabet used by the communication channel. A block code C of
length n over Σ is a subset of Σn:

C ⊆ Σn.

Elements of C are called codewords.

Definition. For any two strings x and y of the same length, the Hamming distance between them is
defined as the number of positions at which the corresponding symbols differ. That is,

d(x, y) = |{i | xi 6= yi}| .

Turns out Hamming distance is actually a distance!

Theorem 1.1. The Hamming distance defines a metric on Σn.

Proof. Let x, y, z ∈ Σn. We verify the four properties of a metric:

1. Non-negativity: By definition, d(x, y) counts the number of differing coordinates between x
and y. Since this is a count, d(x, y) ≥ 0.

2. Identity of indiscernibles: If x = y, then all coordinates agree, so d(x, y) = 0. Conversely, if
d(x, y) = 0, then there are no positions i with xi 6= yi, so x = y.

3. Symmetry: The number of positions where xi 6= yi is the same as the number where yi 6= xi,
so

d(x, y) = d(y, x).

6

4. Triangle inequality: Let us consider each coordinate i ∈ {1, 2, . . . , n}. At each position,
define the indicator function:

δ(a, b) =

{
1 if a 6= b,
0 if a = b.

Then,

d(x, z) =
n

∑
i=1

δ(xi, zi).

For each i, observe that
δ(xi, zi) ≤ δ(xi, yi) + δ(yi, zi),

because if xi = zi, the left-hand side is 0 and the inequality holds; and if xi 6= zi, then either
xi 6= yi or yi 6= zi (or both), so the right-hand side is at least 1. Summing over all i, we get

d(x, z) ≤ d(x, y) + d(y, z).

Hence, all the properties of a metric are satisfied.

Definition. The distance of a code C is the minimum Hamming distance between any two distinct
codewords in C. Formally,

d(C) = min
x,y∈C
x 6=y

d(x, y).

In a sense, the distance of a code quantifies how many changes are required to transform one
valid message (codeword) into another. For example, if a code has distance d = 5, this means that
there exist two distinct codewords x and y that differ in exactly 5 positions.

Now, suppose Alice sends the codeword x, but due to noise in the channel, exactly those 5
positions are altered. Then Bob would receive y instead of x, and since y is also a valid codeword,
he would completely misinterpret the message.

This highlights a key idea: to minimize the chance of such confusion, we want codes to have large
distance. A larger distance makes it less likely that noise will transform one valid codeword into
another. This leads to an important observation.

Claim 1.1. Let d be the distance of a code C. Then the code is d− 1-detectable, or if the channel corrupts
atmost d− 1 letters of the message, then the other party can detect that the code word has been corrupted.

Proof. By definition, the minimum distance d of a code C is the smallest Hamming distance between
any two distinct codewords in C. This means that to transform one codeword into another, at least
d symbol changes are required.

Suppose a codeword c ∈ C is transmitted, and at most d − 1 symbol errors occur during
transmission. Let r be the received word. Then the Hamming distance between c and r is at most
d− 1.

However, since any other codeword in C is at distance at least d from c, the received word r
cannot be a different valid codeword. Therefore, either r = c, or r /∈ C.

Thus, if r ∈ C, no errors occurred; otherwise, if errors occurred, r /∈ C, and the receiver can
detect that an error happened.

Hence, the code can detect up to d− 1 errors.

Lemma 1.1. If the communication channel corrupts at most t symbols during transmission, then any code
with minimum distance at least t + 1 can detect such errors. That is, Bob can recognize when the received
message has been corrupted.

7

Theorem 1.2 (Error Correction Bound). Let C ⊆ Σn be a code with minimum Hamming distance d.
Then C can correct up to t errors if and only if d ≥ 2t + 1.

Proof. Assume a codeword x ∈ C is transmitted, and during transmission, at most t symbols are
corrupted, resulting in a received word r ∈ Σn. That is,

d(x, r) ≤ t.

To decode correctly, the receiver must identify the original codeword x from r. A standard decoding
strategy is to choose the codeword y ∈ C that minimizes the Hamming distance d(r, y). For this
strategy to work reliably, we want x to be the unique codeword within distance t of r.

(Only if direction) Suppose C can correct up to t errors. Then for any two distinct codewords
x, y ∈ C, the decoding balls of radius t around them must be disjoint:

Bt(x) ∩ Bt(y) = ∅.

Otherwise, if r ∈ Bt(x) ∩ Bt(y), then both d(x, r) ≤ t and d(y, r) ≤ t, so r could be decoded
ambiguously.

Now, by the triangle inequality for the Hamming distance:

d(x, y) ≤ d(x, r) + d(r, y) ≤ t + t = 2t,

which would contradict the assumption that the minimum distance of the code is d. Therefore, to
avoid such ambiguity, we must have:

d(x, y) > 2t for all x 6= y ∈ C.

Hence, d ≥ 2t + 1.

(If direction) Now suppose the minimum distance d ≥ 2t + 1. Let x ∈ C be the transmitted
codeword and r ∈ Σn the received word with d(x, r) ≤ t. We claim that x is the unique codeword
within distance t of r.

Suppose for contradiction that there exists another codeword y ∈ C, y 6= x, such that d(y, r) ≤ t.
Then:

d(x, y) ≤ d(x, r) + d(r, y) ≤ t + t = 2t,

which contradicts the assumption that d(x, y) ≥ d ≥ 2t + 1. Therefore, such a y cannot exist.
Hence, for every received word within distance t of a codeword x, that codeword is uniquely

closest, and the code can correct up to t errors.

Suppose Alice sends a codeword x, and during transmission, it gets corrupted and Bob receives
a word y. Given that at most t symbols were altered in the channel, we want to show that Bob can
still correctly recover the original message.

Since Bob knows that at most t errors could have occurred, he considers all codewords within
Hamming distance t of the received word y.1 Clearly, the original codeword x lies within this ball,
since d(x, y) ≤ t.

Now, if x is the only codeword within this ball, then Bob can unambiguously conclude that
Alice must have sent x.

1This is often visualized as placing a Hamming ball of radius t around y.

8

We claim that this is indeed the case, provided the code has minimum distance at least 2t + 1.
Suppose, for contradiction, there exists another codeword x′ 6= x such that d(x′, y) ≤ t. Then by
the triangle inequality:

d(x, x′) ≤ d(x, y) + d(y, x′) ≤ t + t = 2t,

which contradicts the assumption that the minimum distance between any two codewords is at
least 2t + 1.

In other words, to move from one valid codeword to another through corruption, at least 2t + 1
symbol changes are necessary. So if only t symbols are corrupted, the received word is guaranteed
to be closer (in Hamming distance) to the original codeword than to any other.

However, in practice, it may not be efficient to check all codewords within distance t of y to
perform decoding. In fact, even determining whether a given string is a codeword may itself be
computationally difficult.

This highlights two crucial properties we want from our codes in addition to large minimum
distance:

• Efficient codeword detection: There should be an efficient way to verify whether a given
string is a valid codeword.

• Efficient decoding: Given a corrupted word (close to some codeword), we should be able to
efficiently recover the original codeword.

1.1 Example: Repetition Code

Let us consider a simple code over the binary alphabet Σ = {0, 1}. Define the repetition code of
length n = 3 as:

C = {000, 111}

This code encodes the bit 0 as 000 and 1 as 111. It is a (3, 1) block code: each message bit is encoded
as a 3-bit codeword.

1.1.1 Distance of the Code

The Hamming distance between the two codewords is:

d(000, 111) = 3

Hence, the minimum distance of the code is d = 3. Therefore:

• It can detect up to d− 1 = 2 errors.

• It can correct up to
⌊

d−1
2

⌋
= 1 error.

1.1.2 Error Correction Example

Suppose Alice wants to send the bit 1, so she transmits the codeword 111.
Case 1: No error. Bob receives 111, which is a valid codeword, and decodes it as 1.
Case 2: One-bit error. Suppose the second bit is flipped: 111→ 101. Bob receives 101. Now he

checks distances:
d(101, 000) = 2, d(101, 111) = 1

9

Bob decodes it as 111⇒ 1. Correctly decoded.
Case 3: Two-bit error. Suppose 111→ 001. Now:

d(001, 000) = 1, d(001, 111) = 2

Bob decodes it as 000⇒ 0. Incorrect decoding.
However, since 001 /∈ C, Bob can at least detect that an error has occurred.

2 Linear Codes

Recall that a block code C is an arbitrary subset of Σn. Such codes may have no algebraic structure,
making it computationally hard to verify whether a given string is a codeword. This motivates
the study of linear codes, which impose additional structure that allows for efficient encoding and
decoding.

To define linear codes formally, we assume that the alphabet Σ is a finite field Fq. Then the
ambient space Fn

q is a vector space of dimension n over Fq. A linear code is simply a subspace of
this vector space.

Definition. A linear code C ⊆ Fn
q is called an [n, k, d]q linear code if:

• C is a k-dimensional subspace of Fn
q ,

• The minimum (Hamming) distance between any two distinct codewords in C is d.

Equivalently, C is closed under linear combinations: if x, y ∈ C and α, β ∈ Fq, then αx + βy ∈ C.

2.1 Interpretation of Parameters

An [n, k, d]q code encodes k symbols (message length) as n symbols (codeword length), thereby
introducing redundancy to allow for error correction. The parameters have the following interpre-
tation:

• k: Number of message symbols.

• n: Length of the codeword.

• d: Minimum distance between any two codewords — the code can detect up to d− 1 errors
and correct up to

⌊
d−1

2

⌋
errors.

In practice, we aim to maximize k (rate) and d (error protection), but these are in tension with each
other.

2.2 Example: Repetition Code

Let F2 = {0, 1} be the binary field, and consider the code

C = {(0, 0, 0), (1, 1, 1)}.

This is a [3, 1, 3]2 linear code. It is a 1-dimensional subspace of F3
2 (generated by the vector (1, 1, 1)),

and the minimum distance between the two codewords is 3.

10

2.3 Weight of a Vector

Definition. The Hamming weight of a vector x ∈ Fn
q is defined as the number of nonzero entries in

x:
wt(x) = |{i ∈ {1, 2, . . . , n} | xi 6= 0}| .

In the case of binary codes (F2), this simply counts the number of 1s in x. In linear codes, the
minimum distance of the code is equal to the minimum weight among all nonzero codewords:

d = min{wt(x) | x ∈ C, x 6= 0}.

This equivalence holds because, in a linear code, the difference of any two codewords is also a
codeword.

2.4 Minimum Distance and Weight

Claim 2.1. If C is a linear code, then

d(C) = min
x∈C\{0}

wt(x).

Proof. By definition, the minimum distance of C is

d(C) = min
x,y∈C
x 6=y

d(x, y).

Since C is linear, x− y ∈ C for all x, y ∈ C. Also, d(x, y) = wt(x− y). So the above becomes

d(C) = min
z∈C\{0}

wt(z).

2.5 Membership Detection Using Parity-Check Matrix

Suppose we are given a linear code C ⊆ Fn
q of dimension k, and we want to test whether a given

vector x ∈ Fn
q is a codeword (i.e., belongs to C). Since C is a subspace, it has a basis {b1, b2, . . . , bk},

where each bi ∈ Fn
q .

Our goal is to construct a matrix H such that

Hx = 0 if and only if x ∈ C.

That is, H defines a linear map whose kernel is exactly C. This matrix H is called the parity-check
matrix of the code.

2.5.1 Constructing the Matrix H

We first extend the basis {b1, . . . , bk} of C to a full basis {b1, . . . , bk, bk+1, . . . , bn} of Fn
q . Then every

vector v ∈ Fn
q can be uniquely written as:

v = α1b1 + · · ·+ αkbk + αk+1bk+1 + · · ·+ αnbn.

Define a linear map H that:

11

• maps b1, . . . , bk to 0,

• and maps bk+1, . . . , bn to themselves (i.e., acts as identity on them).

Then:
Hv = αk+1bk+1 + · · ·+ αnbn.

Clearly, Hv = 0 if and only if αk+1 = · · · = αn = 0, which happens if and only if v ∈ C.

2.5.2 Computing the Matrix Form of H

Let us now compute the matrix representation of H. Suppose the extended basis {b1, . . . , bn} is
such that it aligns with the standard basis {e1, . . . , en} of Fn

q . Then the transformation H sends:

(α1, . . . , αn) 7→ (0, . . . , 0, αk+1, . . . , αn),

and its matrix is simply:
Ĥ =

[
0(n−k)×k I(n−k)×(n−k)

]
,

where the zero block is of size (n− k)× k and I is the identity matrix of size (n− k)× (n− k).
But in general, our basis {b1, . . . , bn} won’t be the standard basis. So we define a matrix

B ∈ Fn×n
q whose columns are the basis vectors:

B =

 | | |
b1 b2 · · · bn
| | |

 .

Then B sends ei 7→ bi, so its inverse B−1 sends bi 7→ ei.
Now consider the transformation ĤB−1. It acts as follows:

ĤB−1bi = Ĥei =

{
0 if i ≤ k,
ei if i > k.

Therefore, H := ĤB−1 is the matrix we are looking for — it satisfies Hx = 0 if and only if x ∈ C.

2.5.3 Conclusion

The matrix H = ĤB−1 is the parity-check matrix of the code. It defines a linear transformation
whose kernel is exactly C. Given any vector x ∈ Fn

q , we can efficiently test whether x ∈ C by simply
checking whether Hx = 0.

2.6 Generator Matrix

A linear code C ⊆ Fn
q of dimension k can be specified by a basis {g1, g2, . . . , gk}. Arranging these

basis vectors as rows of a k× n matrix G gives the generator matrix of the code.

Definition. A generator matrix G of an [n, k, d]q code is a k× n matrix over Fq such that

C = {mG | m ∈ Fk
q}.

Each message m ∈ Fk
q is encoded as a codeword c = mG. Encoding is thus a simple matrix

multiplication.

12

2.7 Example: [7, 4, 3] Hamming Code

The [7, 4, 3] Hamming code over F2 is a classic example of a linear code that encodes 4-bit messages
into 7-bit codewords and can correct any single-bit error.

A generator matrix G for this code is:

G =


1 0 0 0 1 1 0
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 1

 .

A message m = (m1, m2, m3, m4) is encoded as c = mG.
The parity-check matrix H satisfies GH> = 0 and is given by:

H =

1 1 0 1 1 0 0
1 0 1 1 0 1 0
0 1 1 1 0 0 1

 .

Each column of H is a nonzero 3-bit binary vector — in fact, the set of all nonzero vectors in F3
2.

This ensures the minimum distance is 3, so the code can correct 1 error.

3 Properties of Hamming Codes

Definition (Binary Hamming Code). For an integer r ≥ 2, the binary Hamming codeHr is a linear
code over F2 with parameters

[n = 2r − 1, k = 2r − 1− r, d = 3],

constructed using a parity-check matrix H ∈ Fr×n
2 whose columns are all non-zero binary vectors

of length r, each appearing exactly once.

Theorem 3.1 (Minimum Distance). The minimum distance d of the Hamming codeHr is 3.

Proof. Let H ∈ Fr×n
2 be the parity-check matrix of Hr. Since all columns of H are non-zero and

distinct, any two columns are linearly independent.
Suppose c ∈ Hr \ {0}. Then c is a non-zero codeword, and Hc> = 0. The weight w(c) of c is

the number of positions where c is non-zero.
We show that there are no codewords of weight 1 or 2:

• Weight 1: Suppose c has weight 1, then c = ei for some i, so Hc> = He>i = hi 6= 0,
contradiction.

• Weight 2: Suppose c = ei + ej, then Hc> = hi + hj 6= 0 because hi 6= hj, so again c /∈ Hr.

But any three columns of H may sum to zero. So there exists at least one codeword of weight 3.
Thus, the minimum weight and hence the minimum distance is 3.

Theorem 3.2 (Error Correction Capability). The Hamming codeHr can correct all single-bit errors.

Proof. Since the minimum distance is d = 3, the code can correct up to t =
⌊

d−1
2

⌋
= 1 error.

13

Theorem 3.3 (Perfectness of Hamming Codes). The binary Hamming code Hr is a perfect 1-error-
correcting code. That is, the set of Hamming balls of radius 1 centered at codewords ofHr covers the entire
space Fn

2 .

Proof. The number of vectors in Fn
2 is 2n. Each Hamming ball of radius 1 has:

1

∑
i=0

(
n
i

)
=

(
n
0

)
+

(
n
1

)
= 1 + n = 1 + (2r − 1) = 2r

vectors. The number of codewords is 2k = 2n−r. So the total number of vectors covered by all
Hamming balls of radius 1 centered at codewords is:

2n−r · 2r = 2n.

Hence, the union of these balls covers all of Fn
2 , and the code is perfect.

Remark. No redundancy is wasted in a perfect code. The Hamming codes are the only nontrivial
perfect single-error-correcting binary linear codes.

4 Cyclic Codes

Definition. A cyclic code C ⊆ Fn
q is a linear code with the property that for every codeword

(c0, c1, . . . , cn−1) ∈ C, the cyclic shift

(cn−1, c0, c1, . . . , cn−2)

is also in C.

That is, the space of codewords is invariant under cyclic shifts. So, if one codeword belongs to
the code, then all of its cyclic shifts also belong to the code.

We can identify each vector (c0, c1, . . . , cn−1) ∈ Fn
q with the polynomial

c(x) = c0 + c1x + c2x2 + · · ·+ cn−1xn−1 ∈ Fq[x]/(xn − 1).

Under this identification, cyclic shifts correspond to multiplication by x modulo xn − 1. That is, a
cyclic code corresponds to an ideal in the ring Fq[x]/(xn − 1).

This allows efficient encoding and decoding algorithms via polynomial arithmetic. Thank you
Field theory!

4.1 Codewords as Polynomials

Given a vector (c0, c1, . . . , cn−1) ∈ Fn
q , we associate to it a polynomial

c(X) = c0 + c1X + c2X2 + · · ·+ cn−1Xn−1.

This allows us to interpret the vector space Fn
q as the additive group of the ring Fq[X]/(Xn − 1),

since both are n-dimensional over Fq and isomorphic as additive groups.
What makes this ring view more powerful is the additional multiplicative structure. Suppose

c = (c0, . . . , cn−1) is a codeword. Then a right cyclic shift gives us the vector

c′ = (cn−1, c0, . . . , cn−2).

14

As a polynomial, c(X) = c0 + c1X + · · ·+ cn−1Xn−1, and the shifted version becomes

c′(X) = X · c(X) mod (Xn − 1).

Indeed, multiplying by X shifts each term to a higher degree, and the Xn term is identified with 1
in the quotient ring Fq[X]/(Xn − 1).

Remark. Cyclic shifts correspond to multiplication by powers of X modulo Xn − 1. Thus, the ring
Fq[X]/(Xn − 1) provides a natural algebraic framework for studying cyclic codes.

We now state the fundmental result of cyclic code!

Theorem 4.1. Let C ⊆ Fn
q be a linear code. Then C is a cyclic code if and only if C corresponds to an ideal

in the quotient ring R = Fq[X]/(Xn − 1).

Proof. We interpret codewords in Fn
q as polynomials in Fq[X] of degree less than n, by associating a

vector

(c0, c1, . . . , cn−1) ∈ Fn
q with the polynomial c(X) = c0 + c1X + · · ·+ cn−1Xn−1.

All operations are considered modulo Xn − 1, so the set of all such polynomials forms the ring
R = Fq[X]/(Xn − 1).

(⇒) Suppose C is a cyclic code. Then by definition, C ⊆ Fn
q is a linear subspace that is closed under

cyclic shifts.
Since C is closed under multiplication by X, and by linearity, it is closed under multiplication

by all polynomials in Fq[X] modulo Xn − 1, it follows that for any a(X) ∈ R, we have:

a(X)c(X) ∈ C.

Thus, C is closed under multiplication by arbitrary elements of R, and is therefore an ideal in R.

(⇐) Conversely, suppose C ⊆ R is an ideal. Then, by the definition of an ideal, for any c(X) ∈ C and
any a(X) ∈ R, the product a(X)c(X) ∈ C. Since X ∈ R, multiplying by powers of X corresponds to
performing cyclic shifts modulo Xn − 1. Thus, Xic(X) ∈ C for all i ≥ 0, showing that C is closed
under cyclic shifts.

Hence, C is a cyclic code.

Now let us study the structure of ideals in R = Fq[X]/(Xn − 1). Since Xn − 1 is a monic
polynomial of degree n, and Fq[X] is a principal ideal domain (PID), all ideals in R are principal.
Suppose we factor:

Xn − 1 = g1(X)g2(X) · · · gk(X)

into irreducible polynomials over Fq. Then every ideal of R is of the form 〈g(X)〉 where g(X)
divides Xn − 1.

Corollary 4.1. Every cyclic code C ⊆ Fn
q corresponds to a principal ideal 〈g(X)〉 ⊆ Fq[X]/(Xn − 1),

where g(X) divides Xn − 1.

The polynomial g(X) is called the generator polynomial of the cyclic code.

15

4.2 Dimension of a Cyclic Code

Theorem 4.2. Let C ⊆ Fn
q be a cyclic code, and let g(X) ∈ Fq[X] be its generator polynomial. Suppose

deg g(X) = d. Then:

1. The number of codewords in C is |C| = qn−d.

2. The dimension of the code is dim C = n− deg g(X).

Proof. Since C is a cyclic code of length n, we can identify codewords with polynomials in the
quotient ring

R = Fq[X]/(Xn − 1).

Under this identification, C ⊆ R corresponds to an ideal in the ring R. Every ideal of R is principal,
and therefore generated by a unique monic divisor g(X) of Xn − 1. That is,

C = 〈g(X)〉 = {g(X)h(X) | h(X) ∈ Fq[X], deg(h) < n− d}.

This is because multiplication in R is modulo Xn − 1, so we only consider polynomials of degree
less than n, and

deg(g(X)h(X)) < d + (n− d) = n.

Thus, each codeword is uniquely determined by a polynomial h(X) ∈ Fq[X] of degree less than
n− d, and the total number of such polynomials is:

qn−d,

since each coefficient in h(X) = h0 + h1X + · · ·+ hn−d−1Xn−d−1 can be chosen freely from Fq.
Hence, the number of codewords is |C| = qn−d, and since C is a linear subspace of Fn

q , its
dimension is

dim C = logq |C| = n− d = n− deg(g(X)).

4.2.1 Parity Check Matrix

The parity check operation becomes especially elegant for cyclic codes. Since C = (g(X)), a word
c(X) ∈ R is in the code if and only if g(X) | c(X). Thus, the parity check is just:

c(X) ∈ C ⇐⇒ c(X) mod g(X) = 0.

While one can explicitly write a parity check matrix for cyclic codes, this modular description is
often more convenient computationally.

5 BCH Codes

BCH codes (named after Bose, Ray-Chaudhuri, and Hocquenghem) are a particularly important
class of cyclic codes. The key idea is to define the generator polynomial via its roots rather than its
coefficients.

We continue working in R = Fq[X]/(Xn − 1), identifying cyclic codes with ideals in this ring.
We also assume gcd(n, q) = 1, ensuring that Xn − 1 has no repeated roots.

16

Let ζ be a primitive n-th root of unity in some extension field of Fq. Choose integer d ≥ 1, and
define the BCH generator polynomial to be the minimal polynomial over Fq that has ζ, ζ2, . . . , ζd as
roots:

g(X) = lcm
(

MinimalPolyFq
(ζ), . . . , MinimalPolyFq

(ζd)
)

.

Then the BCH code is defined as the ideal C = (g(X)) ⊆ R.
This construction guarantees:

• The minimum distance of the code is at least d + 1 (to prove soon).

• The dimension of the code is n− deg g(X).

5.1 Parity Check Matrix for BCH Codes

Let C ⊆ Fn
q be a BCH code of length n, and let g(X) ∈ Fq[X] be its generator polynomial. Assume

that g(X) is constructed so that it has ζ, ζ2, . . . , ζd as roots, where ζ is a primitive n-th root of unity
in an extension field Fqm ⊇ Fq. Then:

• Every codeword c(X) ∈ C satisfies g(X) | c(X).

• Since g(X) has ζ, ζ2, . . . , ζd as roots, we have c(ζ i) = 0 for 1 ≤ i ≤ d.

Let us write a codeword c(X) ∈ C as

c(X) = c0 + c1X + c2X2 + · · ·+ cn−1Xn−1,

which corresponds to the vector c = (c0, c1, . . . , cn−1) ∈ Fn
q .

Evaluating c(X) at ζ i gives:

c(ζ i) =
n−1

∑
j=0

cj(ζ
i)j = 0, for i = 1, 2, . . . , d.

This system of equations can be written as a matrix equation:
1 ζ ζ2 · · · ζn−1

1 ζ2 (ζ2)2 · · · (ζ2)n−1

...
...

...
. . .

...
1 ζd (ζd)2 · · · (ζd)n−1




c0
c1
...

cn−1

 =


0
0
...
0

 .

We denote this matrix by H, called the parity-check matrix of the BCH code. That is,

H =


1 ζ ζ2 · · · ζn−1

1 ζ2 (ζ2)2 · · · (ζ2)n−1

...
...

...
. . .

...
1 ζd (ζd)2 · · · (ζd)n−1

 ∈ Fd×n
qm .

Each row of H corresponds to evaluating codewords at one of the roots ζ i, and the condition
Hc> = 0 ensures that each c(X) ∈ C vanishes at these roots.

17

5.2 Distance of a BCH Code

Suppose g(X) is the generating polynomial that has ζ, ζ2, . . . , ζd as roots. What can we say about
the minimum distance of the code C = (g(X))?

Theorem 5.1. A BCH code constructed by requiring ζ1, . . . , ζd to be roots has minimum distance at least
d + 1.

Proof. Suppose not. Then there exists a nonzero codeword c(X) of weight at most d. That is, c(X)
has at most d nonzero coefficients. Let the nonzero coefficients be at positions i1 < i2 < · · · < id,
with corresponding values ci1 , ci2 , . . . , cid .

Then, for each 1 ≤ k ≤ d, we must have:
d

∑
j=1

cij(ζ
k)ij = 0.

This gives us a homogeneous system:
(ζ i1) (ζ i2) · · · (ζ id)
(ζ i1)2 (ζ i2)2 · · · (ζ id)2

...
...

. . .
...

(ζ i1)d (ζ i2)d · · · (ζ id)d




ci1
ci2
...

cid

 =


0
0
...
0


This is a Vandermonde matrix in (ζ i1 , ζ i2 , . . . , ζ id). It is well known that a Vandermonde matrix

is invertible if the entries are distinct (i.e., if ζ ij 6= ζ ik for j 6= k), and so the only solution to this
system is the zero vector. This contradicts our assumption that the codeword had nonzero entries.

Hence, no codeword of weight ≤ d exists, and the minimum weight is at least d + 1.

6 The Decoding Problem

Suppose Alice sends a codeword c(X) (a polynomial of degree at most n− 1) and Bob receives

r(X) = c(X) + e(X),

where e(X) is the error polynomial with at most t =
⌊

d−1
2

⌋
nonzero terms (i.e., errors in at most t

positions).
We aim to recover c(X) from r(X) efficiently, assuming the number of errors is at most t.

6.1 Locator and Correction Polynomials

Let
M = {i | ei 6= 0} , |M| = t.

Define the following two polynomials:

• Locator Polynomial:
u(Y) = ∏

i∈M
(1− ζ iY),

whose roots (in Y) are at Y = ζ−i for i ∈ M.

• Correction Polynomial:
v(Y) = ∑

i∈M
eiζ

iY ∏
j∈M
j 6=i

(1− ζ jY).

18

6.1.1 Why These Polynomials Help

We have:

u(ζ−i) = 0 ⇐⇒ i ∈ M.

So evaluating u at all ζ−i determines the error positions.
To find the actual error values, we compute the the formal derivative of u(Y). To compute the

formal derivative u′(Y), we apply the product rule:

d
dY

[
∏
i∈M

(1− ζ iY)

]
= ∑

i∈M

 d
dY

(1− ζ iY) · ∏
j∈M
j 6=i

(1− ζ jY)

 .

Since d
dY (1− ζ iY) = −ζ i, we get:

u′(Y) = − ∑
i∈M

ζ i ∏
j∈M
j 6=i

(1− ζ jY).

Evaluating v and u′ at Y = ζ−i gives:

v(ζ−i) = ei ∏
j∈M
j 6=i

(1− ζ j−i),

u′(ζ−i) = −ζ i ∏
j∈M
j 6=i

(1− ζ j−i),

hence,

v(ζ−i)

u′(ζ−i)
= − ei

ζ i .

Thus, we can recover the value ei once we know u and v.

6.2 Computing the Polynomials

All Bob has is the received word r(X) and the knowledge that g(X) vanishes at ζ1, . . . , ζd−1. So, we
can compute:

Sk = r(ζk) = c(ζk) + e(ζk) = e(ζk),

for 1 ≤ k < d, since c(ζk) = 0.
Let us define the rational function

w(Y) =
v(Y)
u(Y)

= ∑
i∈M

eiζ
iY

1− ζ iY
.

19

We use a formal geometric series expansion (justified below):

1
1− ζ iY

=
∞

∑
k=0

(ζ iY)k,

w(Y) = ∑
i∈M

eiζ
iY

∞

∑
k=0

(ζ iY)k

=
∞

∑
k=0

Yk+1 ∑
i∈M

eiζ
i(k+1)

=
∞

∑
k=1

Yke(ζk).

Thus,

w(Y) ≡
d−1

∑
k=1

Yke(ζk) mod Yd.

6.2.1 Justifying the Geometric Expansion

We are working modulo Yd, so we only care about the polynomial truncated to degree < d. Since
each (1 − ζ iY) divides 1 − (ζ iY)d = 1 − ζ idYd = 1 in Fq[Y]/(Yd), it follows that (1 − ζ iY) is
invertible modulo Yd, with inverse:

(1− ζ iY)−1 ≡
d−1

∑
k=0

(ζ iY)k mod Yd.

Hence, the expansion is justified modulo Yd.

6.3 Recovering u(Y) and v(Y)

Let
u(Y) = 1 + u1Y + · · ·+ utYt, v(Y) = v1Y + · · ·+ vtYt.

From w(Y) ≡ v(Y)/u(Y) mod Yd, we can clear the denominator and write:

v(Y) ≡ w(Y) · u(Y) mod Yd.

Expanding the right-hand side, we write:

w(Y) · u(Y) =
(

d−1

∑
j=1

SjY j

) (
1 + u1Y + u2Y2 + · · ·+ utYt) .

This product is computed modulo Yd, and we collect the coefficients of Y1, Y2, . . . , Yd−1. Each
coefficient yields a linear equation in the unknowns u1, . . . , ut and v1, . . . , vt. For example, the
coefficient of Y1 gives:

v1 = S1,

the coefficient of Y2 gives:
v2 = S2 + S1u1,

and so on.

20

In total, we obtain d− 1 linear equations in 2t unknowns.
Matching coefficients of Y1 through Yd−1 gives a system of d − 1 linear equations in the 2t

unknowns u1, . . . , ut, v1, . . . , vt. Since 2t ≤ d− 1, this system can be solved efficiently.
Since we assume 2t ≤ d− 1, this system is either determined or underdetermined but solvable,

and can be handled efficiently using linear algebra over Fq.
Once we solve for the error-locator polynomial u(Y), we can find the error positions by finding

its roots. Then, we can compute the error values and recover the transmitted codeword.

Algorithm 1 Syndrome Decoding for BCH Codes
Require: Received word r = (r0, . . . , rn−1) ∈ Fn

q , designed to correct up to t errors.
Ensure: Corrected codeword c ∈ Fn

q
Let ζ be a primitive n-th root of unity in some extension of Fq.
Compute Sj:
for j = 1 to d− 1 do

Sj ← ∑n−1
i=0 riζ

ij

end for
Define: w(Y)← S1Y + S2Y2 + · · ·+ Sd−1Yd−1

Solve Key Equation: Find polynomials u(Y) = 1+u1Y+ · · ·+utYt and v(Y) = v1Y+ · · ·+ vtYt

such that
v(Y) ≡ w(Y) · u(Y) mod Yd

This gives a system of d− 1 linear equations in 2t unknowns.
Solve this system using Gaussian elimination
Find Error Locations:
Find all roots of u(Y) in the field extension.
for each root α of u(Y) do

Find i ∈ {0, 1, . . . , n− 1} such that α = ζ−i

Add i to list of error positions I
end for
Compute Error Values
Compute formal derivative u′(Y) of u(Y).
for each ik ∈ I do

eik ← −
v(ζ−ik)

u′(ζ−ik)
end for
Correct Errors:
for each ik ∈ I do

rik ← rik − eik

end for
return c← r

21

7 Error Detection Using Generator Polynomials

7.1 Detection of a Single Error

Suppose that a single-bit error occurs in position i during transmission. The received polynomial
becomes:

r(X) = c(X) + Xi.

Since g(X) divides c(X), it follows that:

r(X) mod g(X) = Xi mod g(X).

Hence, whether or not the error is detectable reduces to whether Xi mod g(X) is nonzero.

Theorem 7.1 (Error Detection Criterion). A single-bit error in a codeword is detectable if and only if
g(X) does not divide Xi for any i, 0 ≤ i < n.

Proof. If g(X) divides Xi, then Xi ≡ 0 mod g(X), so r(X) ≡ c(X) mod g(X), and the syndrome
is zero. Thus, the receiver cannot detect the error because r(X) appears to be a valid codeword.

Conversely, if g(X) does not divide Xi, then r(X) mod g(X) 6= 0, and the error is detected due
to a non-zero syndrome. Therefore, detectability of single errors is equivalent to g(X) not dividing
any monomial Xi.

Theorem 7.2 (Sufficient Condition). If the generator polynomial g(X) has more than one nonzero term
(i.e., it is not a monomial), then g(X) does not divide any monomial Xi for i ≥ 0. Hence, all single-bit errors
are detectable.

Proof. Suppose, for contradiction, that g(X) divides Xi for some i ≥ 0. Then Xi = g(X)q(X) for
some polynomial q(X).

But Xi is a monomial, so the product g(X)q(X) must also be a monomial. This implies that both
g(X) and q(X) must be monomials (since any polynomial with more than one term multiplied by
anything gives multiple terms).

However, g(X) was assumed to have more than one nonzero term, contradicting this implica-
tion. Hence, g(X) cannot divide any Xi, and thus all single-bit errors are detectable.

Theorem 7.3. Let f (X) ∈ F2[X] be a polynomial divisible by 1 + X. Then f (X) has an even number of
nonzero terms.

Proof. We work over F2, the field with two elements.
Suppose f (X) = a0 + a1X + · · ·+ anXn ∈ F2[X], and assume (1 + X) | f (X). Then f (1) = 0,

because:
1 + X | f (X) ⇒ f (1) = 0.

Now evaluate f (1):
f (1) = a0 + a1 + · · ·+ an.

Since we are working in F2, addition is modulo 2, so f (1) equals the number of nonzero
coefficients modulo 2.

Therefore, f (1) = 0 implies that the number of nonzero coefficients in f (X) is even.
Hence, f (X) has an even number of terms.

22

It follows that the code generated by the polynomial P(X) = 1 + X detects not only any single
error, but in fact any odd number of errors. The reason is that any codeword must have an even
number of nonzero coefficients, i.e., an even Hamming weight. Thus, the check symbol in such a
code is simply an overall parity check, chosen to ensure that the total number of ones in the code
polynomial is even.

A polynomial P(X) ∈ F2[X] is said to have exponent e if e is the least positive integer such that

P(X) | (Xe + 1)

in F2[X]. That is, P(X) divides Xe + 1 and does not divide Xk + 1 for any positive integer k < e.

Theorem 7.4 (Single and Double Error Detection). Let P(X) be a binary polynomial of exponent e. Then
a linear cyclic code of length n ≤ e generated by P(X) detects all single and double errors.

Proof. A codeword is a multiple of P(X): c(X) = q(X)P(X). Suppose a single error occurs at
position i, resulting in the received polynomial

r(X) = c(X) + Xi.

Then r(X) mod P(X) = Xi mod P(X). If P(X) - Xi, the error is detected. Since P(X) | (1 + Xe)
and i < e, Xi cannot be divisible by P(X), so all single errors are detected.

For two errors at positions i and j with i 6= j, the received polynomial is

r(X) = c(X) + Xi + X j.

Again, unless P(X) | Xi + X j, the error will be detected. Since n ≤ e, Xi + X j is not divisible by
P(X) for any distinct i, j < n, so the code detects all double errors as well.

Theorem 7.5 (Detection of Single, Double, and Triple Errors). Let P1(X) be a binary polynomial of
exponent e, and define P(X) = (1 + X)P1(X). Then a cyclic code of length n ≤ e generated by P(X)
detects all single, double, and triple errors.

Proof. The factor 1 + X ensures that the code detects all error patterns of odd weight (e.g., weight 1
and 3). From Theorem 1, the factor P1(X) detects all weight 2 errors provided n ≤ e.

Now, if the received polynomial contains a single error, say Xi, it is not divisible by 1 + X and
thus not divisible by P(X), hence detected.

For double errors Xi + X j, the weight is 2 and the same argument from the previous theorem
applies.

For triple errors, the total weight is odd, and thus the error polynomial is not divisible by 1 + X.
Therefore, it cannot be divisible by P(X) either. Hence, all errors of weight ≤ 3 are detected.

7.2 Computing the Exponent

To compute the exponent e of a polynomial P(X), one checks successive powers of X to find the
smallest e such that

1 + Xe ≡ 0 (mod P(X)) or equivalently P(X) | (1 + Xe).

This can be done via long division or modular exponentiation in F2[X].

23

Algorithm 2 Compute the Exponent of a Polynomial P(X) ∈ F2[X]

Require: A nonzero polynomial P(X) ∈ F2[X]
Ensure: The exponent e, the smallest positive integer such that P(X) | (Xe + 1)

1: Let e← 1
2: Let f (X)← X mod P(X)
3: while f (X) 6≡ 1 mod P(X) do
4: f (X)← f (X) · X mod P(X)
5: e← e + 1
6: end while
7: return e

8 Burst Error Detection and Correction

Definition. A burst error of length b is any pattern of errors for which the number of symbols
between the first and last erroneous symbols (inclusive) is b. That is, the burst spans a contiguous
block of b positions, and errors may occur at one or more positions within this block.

Example 8.1. Consider a transmitted codeword of length 10:

Transmitted: 1 0 0 1 1 0 1 0 1 1

Suppose an error occurs in the following positions:

Received: 1 1 0 1 0 1 1 0 1 1

Errors occurred at positions 2, 4, 5, and 6. The first error is at position 2 and the last at position
6. Therefore, the total span is 6− 2 + 1 = 5. Thus, this is a burst error of length b = 5, even though
not every bit in this span is erroneous.

Theorem 8.1. Let P(X) be a generator polynomial of degree r. Then a cyclic code generated by P(X) detects
all burst errors of length ≤ r.

Proof. Let E(X) be the error polynomial corresponding to a burst of length ≤ r. Then E(X) =
XkQ(X) where deg(Q) < r. Since deg(Q) < deg(P), the polynomial P(X) cannot divide E(X),so
the error is detected.

8.1 General Burst Error Detection in Cyclic Codes

Theorem 8.2 (Burst Error Detection). Let g(X) be a generator polynomial of a cyclic code of length n and
dimension k. Then the code detects all burst errors of length ≤ n− k.

Proof. Suppose an error polynomial e(X) represents a burst of length ≤ n − k. Then e(X) =
XiQ(X) with deg Q < n− k. Since deg Q < deg g(X), g(X) does not divide e(X) and the error is
detected.

Theorem 8.3 (Fraction of Undetected Bursts). Let C ⊆ Fn
2 be a cyclic (n, k)-code. Then, the fraction of

burst errors of length b > n− k that go undetected by the code is:{
2−(n−k) if b > n− k + 1,
2−(n−k−1) if b = n− k + 1.

24

Proof. Let the error pattern be of the form E(X) = XiE1(X), where E1(X) is a polynomial of degree
b − 1. Since E1(X) must have both the terms X0 and Xb−1, there are exactly b − 2 coefficients
corresponding to X j where 0 < j < b− 1 that can be either 0 or 1. Therefore, there are 2b−2 distinct
possible polynomials E1(X).

An error is undetected if and only if E1(X) has P(X) as a factor:

E1(X) = P(X)Q(X),

where deg(P) = n− k. Then the degree of Q(X) must be:

deg(Q(X)) = b− 1− (n− k).

• If b− 1 = n− k, then Q(X) = 1, and there is only one such polynomial:

E1(X) = P(X),

which gives a single undetected error pattern. Hence, the fraction of undetected bursts is:

1
2b−2 = 2−(n−k−1).

• If b− 1 > n− k, then Q(X) has degree b− 1− (n− k). Since Q(X) must also contain both
X0 and Xb−1−(n−k), it has b− 2− (n− k) intermediate coefficients that can vary freely. Thus,
the number of such Q(X) is:

2b−2−(n−k),

and so the fraction of undetected bursts is:

2b−2−(n−k)

2b−2 = 2−(n−k).

8.2 Detection of Multiple Bursts

Theorem 8.4. The cyclic code generated by P(X) = (1 + X)P1(X) detects any combination of two
burst-errors of length two or less, provided the code length n is greater than e, the exponent of P1(X).

Proof. There are four types of error patterns involving at most two bursts of length at most two:

1. E(X) = Xi + X j — two single-bit errors.

2. E(X) = (Xi + Xi+1) + X j — one burst of length two and one single-bit error.

3. E(X) = Xi + (X j + X j+1) — again, one burst of length two and one single-bit error.

4. E(X) = (Xi + Xi+1) + (X j + X j+1) — two bursts of length two.

Observation:

• Error patterns of types (2) and (3) have an odd number of 1s, hence they are detected by the
1 + X factor in P(X), since a codeword divisible by 1 + X must have an even number of
nonzero terms.

25

• In type (4), we have:

E(X) = (Xi + Xi+1) + (X j + X j+1) = (1 + X)(Xi + X j).

Here, the factor 1 + X cancels out with the same factor in P(X). So the divisibility of E(X) by
P(X) now depends on whether Xi + X j is divisible by P1(X).

• The same issue arises in case (1), where E(X) = Xi + X j. To ensure detection, we must
guarantee that Xi + X j is not divisible by P1(X).

From above theorem we know that if the code length n > e, then Xi + X j is not divisible by
P1(X) for any distinct i, j, hence such patterns will be detected.

9 Fire Codes

Named after Philip Fire, fire codes are a class of cyclic codes designed for detecting and correcting
multiple burst errors.

9.1 Definition

Definition (Fire Code). A Fire code is a binary cyclic code of length n with generator polynomial

g(X) = (Xc + 1)P(X),

where P(X) is a primitive polynomial over F2 of degree r and c ≥ 1 is a fixed integer. The total
length of the code is n ≤ 2r − 1 (the exponent of P(X)).

The factor Xc + 1 enforces a constraint on the relative position of burst errors, enabling the
detection of multiple bursts separated by a certain gap.

9.2 Parameters and Capabilities

• Code length: n ≤ exp(P)

• Detects: All bursts of length ≤ b occurring in two separate places if they are separated by at
least c bits

9.3 Burst Error Detection Capability

Theorem 9.1. Let P(X) = (Xc + 1)P1(X), where:

• P1(X) is irreducible,

• the degree of P1(X) is at least as great as the length of the shorter burst,

• and the code length n is no greater than lcm(c, e), where e is the exponent to which P1(X) belongs.

Then the cyclic code generated by P(X) will detect any combination of two burst errors

E(X) = XiE1(X) + X jE2(X),

provided that the sum of the lengths of the bursts is at most c + 1.

26

Proof. Suppose E(X) = XiE1(X) + X jE2(X) is an undetected error pattern, i.e., E(X) ∈ (P(X)).
This means that:

P(X) | E(X).

Let the lengths of E1(X) and E2(X) be `1 and `2, respectively. Then:

deg(E1(X)) < `1, deg(E2(X)) < `2.

We assume that:
`1 + `2 ≤ c + 1.

Now note that Xc + 1 divides P(X), so any polynomial divisible by P(X) is also divisible by
Xc + 1. Therefore, we must have:

(Xc + 1) | E(X).

But since `1 + `2 ≤ c + 1, and E1(X), E2(X) are supported in intervals of size at most `1, `2, their
non-zero terms do not "wrap around" modulo Xn − 1, and the total span of E(X) is at most c + 1.
Hence, E(X) cannot be a multiple of Xc + 1 unless it has a specific symmetric structure.

Moreover, since P1(X) is irreducible and has degree at least min(`1, `2), it cannot divide E1(X)
or E2(X) unless one of them is zero or the burst has a very specific pattern (which would contradict
minimality of the burst or irreducibility of P1(X)).

Finally, the condition that n ≤ lcm(c, e), where e is the exponent of P1(X), ensures that the roots
of P1(X) are appropriately spaced and not aligned with roots of Xc + 1 modulo Xn − 1, preventing
coincidental cancellation.

Thus, under these assumptions, P(X) - E(X), and the code detects the error.

Remark. The minimum gap c ensures that the two bursts do not interfere in a way that could
make their combination divisible by Xc + 1. The use of the primitive P(X) ensures that any burst
of length ≤ b is detected individually.

10 References

References

[1] CNT notes, Piyush Kurur, Computation Number Theory 2007, Scribes by Ramprasad Sapthar-
ishi, lecture notes

[2] Cyclic Codes for Error Detection,W. W. PETERSONt, MEMBER, IRE, AND D. T. BROWNt,
MEMBER, IRE, paper

http://www.cmi.ac.in/~ramprasad/lecturenotes/comp_numb_theory/lecture2324.pdf
https://apt.cs.manchester.ac.uk/ftp/pub/amulet/papers/Peterson-Brown_61.pdf

	Introduction
	Example: Repetition Code
	Distance of the Code
	Error Correction Example

	Linear Codes
	Interpretation of Parameters
	Example: Repetition Code
	Weight of a Vector
	Minimum Distance and Weight
	Membership Detection Using Parity-Check Matrix
	Constructing the Matrix H
	Computing the Matrix Form of H
	Conclusion

	Generator Matrix
	Example: [7,4,3] Hamming Code

	Properties of Hamming Codes
	Cyclic Codes
	Codewords as Polynomials
	Dimension of a Cyclic Code
	Parity Check Matrix

	BCH Codes
	Parity Check Matrix for BCH Codes
	Distance of a BCH Code

	The Decoding Problem
	Locator and Correction Polynomials
	Why These Polynomials Help

	Computing the Polynomials
	Justifying the Geometric Expansion

	Recovering u(Y) and v(Y)

	Error Detection Using Generator Polynomials
	Detection of a Single Error
	Computing the Exponent

	Burst Error Detection and Correction
	General Burst Error Detection in Cyclic Codes
	Detection of Multiple Bursts

	Fire Codes
	Definition
	Parameters and Capabilities
	Burst Error Detection Capability

	References

