Cylotomic Polynomials and their applications

Sunaina Pati, Chennai Mathematical Institute, Chennai January 18, 2025

Contents

0	Introduction	2
1	Cylcotomic Polynomials	2
2	Cyclotomic Polynomials for two variables	4
3	Orders and Cyclotomic Polynomials	4
4	Any subgroup of a mulitiplicative group of a field is cyclic	5
5	Roots of unity on Finite fields	5
6	Cyclotomic polynomial on finite fields	6
7	On primes dividing Cyclotomic polynomials	6
8	Irreducibility of Cyclotomic polynomials	7
9	On coefficients of Cyclotomic polynomials	7
10	Zsigmondy's theorem	8
	10.1 Lifting the exponent lemma	8
	10.2 The $n = 2$ case	9
	10.3 LTE on Cylcotomic prolynomials	9
	10.4 Final Proof	
	10.5 Sum version of Zsigmondy	
	TOW DULL FOLDIOLI OF MUIGHBORN FOR FOLDING TO SEE THE FOLDING TO SEE THE FOLDING TO SEE THE FOLDING TO SEE THE FOLDING THE FOL	

0 Introduction

Just my notes on Cylcotomic polynomials. A lot of references has been used:

- This math stackexchange answer
- MIT lecture notes
- Brett Porter's Cyclotomic polynomials
- Ramprasad Saptarishi's scribed Computational Number theory lecture 23 and 24
- Evan's Orders modulo a prime.

It is also a more refined and self-contained version of Yan Sheng's blog post, Bart Michels's paper and this aops post.

1 Cylcotomic Polynomials

Definition (primitive *n*-th roots of unity). For $n \ge 1$, the primitive *n*-th roots of unity are the $\omega \in \mathbb{C}$ such that $\omega^n = 1$, and $\omega^k \ne 1$ for $1 \le k < n$. More explicitly, these are given by

$$e^{\frac{2\pi ik}{n}}$$
, $1 \le k \le n$, $(k, n) = 1$.

Note that there are precisely $\varphi(n)$ many primitive n-th roots of unity.

Definition. The *n*-th cyclotomic polynomial Φ_n is defined by

$$\Phi_n(X) := \prod_j (X - \omega_j),$$

where the product is taken over all primitive *n*-th roots of unity ω_i .

Note that the n-th roots of unity are precisely the union of the primitive d-th root of unity for $d \mid n$, so

$$X^n - 1 = \prod_{d|n} \Phi_d(X).$$

So we also get that

$$\sum_{d|n} \varphi(d) = n.$$

Example 1.1. Here are the first few cyclotomic polynomials:

- $\Phi_1(x) = x 1$
- $\Phi_2(x) = x + 1$
- $\Phi_3(x) = x^2 + x + 1$
- $\Phi_4(x) = x^2 + 1$

Now, we shall prove some properties about it.

Theorem 1.1. For $n \ge 1$, $\Phi_n(X)$ has integer coefficients.

Proof. We induct. For n = 1, we have $\Phi_1(x) = x - 1 \in \mathbb{Z}[x]$. Say $\Phi_k(x) \in \mathbb{Z}[x]$ for all k < n. Note that

$$x^n - 1 = \prod_{d|n} \Phi_d(x) = \Phi_n(x) \prod_{d|n,d \neq n} \Phi_d(x) = \Phi_n(x) p_n(x),$$

where $p_n(x) = \prod_{d|n,d\neq n} \Phi_d(x)$. Then $p_n \in \mathbb{Z}[X]$ by induction. Now, we state a claim.

Claim 1.1. *If*

$$(x^{n}-1) = (\sum_{i=1}^{m} a_{i}x^{i})(\sum_{j=1}^{l} b_{j}x^{i}),$$

where $\sum_{i=1}^{m} a_i x^i \in \mathbf{Z}[\mathbf{x}]$, then $b_j \in \mathbb{Q}, \forall j$.

Proof. Note that since $a_m \cdot b_l = 1 \implies b_l \in \mathbb{Q}$. Similarly we can show all the b_i lie in \mathbb{Q} .

So, by the above claim, we get $\Phi_n(x) \in \mathbb{Q}[x]$. Let α be the smallest positive rational such that $\alpha \Phi_n(x) \in \mathbb{Z}[x]$. Note that α must be an integer. Also, note that gcd of the coeffecients of polynomial $\alpha \Phi_n(x) = \Phi'_n(x)$ will be 1.

Definition (Primitive Polynomial). Call an integer polynomial primitive if gcd of the coefficients is 1.

Lemma 1.1. Let p(x), q(x) be two primitive polynomials. Then $p(x) \cdot q(x)$ is also primitive.

Proof. Let $p(x)q(x) = c_l x^l + \cdots + c_0$. Let $p(x) = b_m x^m + \cdots + b_0$, $q(x) = a_n x^n = \cdots + a_0$. Suppose $\gcd(c_l, \ldots, c_0) > 1$. Then \exists prime p which divides all the c_i . Since p(x) is not primitive, $\exists b_j$ such that $p \nmid b_j$. So ther must exist a minimal b_j such that $p \nmid b_j$. Then $p|b_0, b_1, \ldots, b_{j-1}$. Consider c_j . Since

$$p|c_i \implies p|b_0a_i + b_1a_{i-1} + \dots b_ia_0 \implies p|b_ia_0 \implies p|a_0.$$

Similarly consider c_{i+1} . Since

$$p|c_{j+1} \implies p|b_0a_{j+1} + \cdots + b_ja_1 + b_{j+1}a_0 \implies p|a_1.$$

Continuing this process, we get that p divides all the coefficients of q(x), contradicting that it is primitive.

Note that $\Phi'_n(x)$ and $p_n(x)$ are primitive. But note that

$$\Phi'_n(x) \cdot p_n(x) = \alpha(x^n - 1).$$

By above lemma, we should have $\alpha(x^n-1)$ to be primitive. Hence $|\alpha|$ is 1. And so $\Phi_n(x) \in \mathbb{Z}[x]$.

Note that these polynomials are also irreducibles.

Proposition 1.1. *Let* p *be a prime and* $n \ge 1$. *Then*

$$\Phi_{pn}(X) = \begin{cases} \Phi_n(X^p) & p \mid n \\ \frac{\Phi_n(X^p)}{\Phi_n(X)} & p \nmid n. \end{cases}$$

Proof. If $p \mid n$, note that the p-th roots of the primitive n-th roots of unity are the primitive pn-th roots of unity If $p \nmid n$, note that the p-th roots of the primitive n-th roots of unity are the union of the primitive n-th and pn-th roots of unity.

Proposition 1.2. *Let* $n \ge 3$ *and* $x \in (1, \infty)$ *. Then*

$$(x-1)^{\varphi(n)} < \Phi_n(x) < (x+1)^{\varphi(n)}.$$

Proof. For any primitive *n*-th root of unity ω , we have $|\omega| = 1$, so by triangle inequality, we get

$$x - 1 \le |x - \omega| \le x + 1$$
.

Hence taking products over all ω gives

$$(x-1)^{\varphi(n)} < |\Phi_n(x)| < (x+1)^{\varphi(n)}.$$

Note that $\Phi_n(x) > 0$ for x > 1. So done.

2 Cyclotomic Polynomials for two variables

Now we will see why we are dealing with cyclotomic polynomials.

Definition. Define

$$\Phi_n(a,b) := b^{\varphi(n)} \Phi_n\left(\frac{a}{b}\right).$$

Note that $\Phi_n(a, b)$ is an integer. Moreover,

$$\prod_{d|n} \Phi_n(a,b) = \prod_{d|n} b^{\varphi(d)} \Phi_d \left(\frac{a}{b}\right)$$

$$= \prod_{d|n} b^{\varphi(d)} \cdot \prod_{d|n} \Phi_d \left(\frac{a}{b}\right)$$

$$= b^n \left[\left(\frac{a}{b}\right)^n - 1 \right]$$

$$= a^n - b^n$$

Similarl to previous sections, the following two propositions follow.

Proposition 2.1. *Let* p *be a prime and* $n \ge 1$. *Then*

$$\Phi_{pn}(a,b) = \begin{cases} \Phi_n(a^p,b^p) & p \mid n \\ \frac{\Phi_n(a^p,b^p)}{\Phi_n(a,b)} & p \nmid n. \end{cases}$$

Proposition 2.2. *Let* $n \ge 3$. *Then*

$$(a-b)^{\varphi(n)} < \Phi_n(a,b) < (a+b)^{\varphi(n)}.$$

3 Orders and Cyclotomic Polynomials

Let $p \ge 3$ be a prime such that $p \nmid a, b$. Let $n \ge 1$, and let $k \ge 1$ be minimal such that $p \mid a^k - b^k$. Then note that k is order of a/b modulo p. So $k \mid p - 1$.

Moreover, note that $\Phi_n(a,b)|a^n-b^n$.

Theorem 3.1. If p is a prime and $\Phi(a) \equiv 0 \pmod{p} \implies ord_p(a) = n \implies p \equiv 1 \pmod{n}$ or p|n.

Proof. Note that

$$\Phi_n(X)|x^n-1 \implies \Phi_n(a)|a^n-1 \implies p|a^n-1 \implies \operatorname{ord}_p(a)|n.$$

If ord_v(a) = n then the first case holds. If ord_v(a) < n then $\exists k < n$ such that $p | x^k - 1$ and $\Phi_k(a) = 1$. So $x^n - 1$ has a root of multiplicity of atleast 2. So

$$(nx^{n-1}, x^n - 1) \neq 1 \text{ in } \mathbb{F}_p \implies p|n.$$

Any subgroup of a mulitiplicative group of a field is cyclic

Lemma 4.1. Let G a finite group with n elements. If for every $d \mid n, \#\{x \in G \mid x^d = 1\} \le d$, then G is cyclic.

Proof. Fix $d \mid n$ and consider the set G_d made up of elements of G with order d. Suppose that $G_d \neq \emptyset$, so there exists $y \in G_d$; it is clear that $\langle y \rangle \subseteq \{x \in G \mid x^d = 1\}$. But the subgroup $\langle y \rangle$ has cardinality *d*, so from the hypothesis we have that $\langle y \rangle = \{x \in G \mid x^d = 1\}$. Therefore G_d is the set of generators of the cyclic group $\langle y \rangle$ of order d, so $\#G_d = \phi(d)$.

We have proved that G_d is empty or has cardinality $\phi(d)$, for every $d \mid n$. So we have:

$$n = \#G \tag{4.1}$$

$$= \sum_{d|n} \#G_d \tag{4.2}$$

$$\leq \sum_{d|n} \phi(d) \tag{4.3}$$

$$\leq \sum_{d|n} \phi(d) \tag{4.3}$$

$$= n. (4.4)$$

Therefore $\#G_d = \phi(d)$ for every d|n. In particular $G_n \neq \emptyset$. This proves that G is cyclic.

If *G* is a finite subgroup of the multiplicative group of a field, then *G* satisfies the hypothesis because the polynomial $x^d - 1$ has d roots at most.

Roots of unity on Finite fields

Theorem 5.1. Let $K^{(n)}$ be splitting field of $x^n - 1$. The set of all the roots be $E^{(n)}$. K be field of char p. Then:

- if $p \nmid n$ then $E^{(n)}$ is cyclic group of order n.
- if $p \mid n \implies n = p^e m$, $p \nmid m$ then $K^{(n)} = K^{(m)}$, $E^{(n)} = E^{(m)}$ and root of $x^n 1$ are m elements each occuring with muliplicity p^e .

Proof. The second part follows because

$$x^{n} - 1 = x^{mp^{e}} - 1 = (x^{m} - 1)^{p^{e}}$$

by frobinious map. The first pat is true because of the following: Note that $x^n - 1$ and nx^n have common factor 1. So no repeating root. The set of roots form a multiplicative group as if $\alpha, \beta \in E^{(n)}$ then

$$(\alpha \beta^{-1})^n = \alpha^n \beta^{-n} = 1 \implies \alpha \beta^{-1} \in E^{(n)}.$$

And any subgroup of a mulitiplicative group of a field is cyclic.

6 Cyclotomic polynomial on finite fields

Theorem 6.1. Let $K = \mathbb{F}_p$ and (p, n) = 1, $d = ord_n(p)$, p is prime. Then:

- $K^{(n)}$ is the spliting field of any irreducible factor of $\Phi_n(x)$
- $[K^{(n)}:K]=d$

Proof. Let ζ be one primitive root of $\Phi_n(x)$. Note that

$$\zeta \in \mathbb{F}_{p^k} \iff \zeta^{p^k} = \zeta \text{ (as all element of the field satisfy } x^{p^k} - x = 0)$$

$$\iff \zeta^{p^k - 1} = 1 \iff n | p^k - 1 \iff p^k \equiv 1 \mod n.$$

Note that since $d = \operatorname{ord}_n(p) \implies \zeta \in \mathbb{F}_{p^d}$ but no proper subfield of \mathbb{F}_{p^d} . So the minimal polynomial of ζ has degree d. Same for other primitive roots. So the spliting field $K^{(n)} = \mathbb{F}_{p^d}$ and $[K^{(n)} : K] = d$.

Let ζ be a primitive- n th root of unity. Note that $\zeta \in \mathbb{F}_p$ when r = p - 1 as all the element of \mathbb{F}_p are roots of $x^p - x$, hence all non zero elements are roots of $x^{p-1} - 1$. Let M(x) be the minimal polynomial of ζ . We claim the following:

Theorem 6.2.

$$deg(M(x)) = ord_r(p)$$
.

Proof. Let deg(M(x)) = d. Let the polynomial be $a_0 + a_1x + \cdots + a_dx^d$. Note that

$$M(\zeta) = 0 \implies 0 = (M(\zeta))^p \implies (a_0 + a_1 \zeta + \dots + a_d \zeta^d)^p = a_0^p + a_1^p \zeta^p + \dots + a_d^p \zeta^{pd} = a_0 + a_1 \zeta + a_d \zeta^d = 0.$$

$$M(\zeta) = 0 \implies M(\zeta^p) = 0.$$

Similarly, we get $\zeta^{p^2}, \ldots, \zeta^{p^{d-1}}$ as the roots. So the minimal polynomial has roots precisely; $\zeta, \zeta^p, \zeta^{p^2}, \ldots, \zeta^{p^{d-1}}$ as it is degree d polynomial. So note that $\zeta^{p^d} = \zeta^p$. All elements of \mathbb{F}_{p^d} satisfy the equation $x^{p^d} - x = 0$. (\mathbb{F}_{p^d} is the splitting field of this polynomial.) Thus, in particular, $\zeta^{p^d} = \zeta$. So $d = \operatorname{ord}_r(p)$.

Remark. This proof was in Professor Ramprasad's scribed notes.

7 On primes dividing Cyclotomic polynomials

Theorem 7.1. Let $p \nmid n$ and $m \mid n$. Then $\Phi_n(x)$ and $x^m - 1$ has no common root modulo p.

Proof. Note that $\Phi_n(x)|x^n-1$ and $x^m-1|x^n-1$. And x^n-1 has double root modulo p iff $(x^n-1,nx^{n-1})>1$. But $p\nmid n$.

Theorem 7.2. Let n be a positive integer. There are infinitely many primes congruent to $1 \mod n$.

Proof. Well, we prove it just like how we prove that there are infinitely many primes. Say there are finite many primes say $p_1, p_2, ..., p_k$. Then consider $\Phi_n(knp_1, p_2, ..., p_k)$ for big enough k. Note the none $p_i|knp_1, p_2, ..., p_k$. So a new prime p divides it. However, note that by theorem 3.1, we get that $p \equiv 1 \mod n$.

8 Irreducibility of Cyclotomic polynomials

Let ζ be a primitive n^{th} root of unity and let f(z) be its minimal polynomial. Since ζ is also a root of $z^n - 1 = 0$, it follows that f(z) divides $(z^n - 1)$ and by Gauss Lemma f(z) has integer coefficients.

Theorem 8.1. If p is any prime which does not divide n then ζ^p is a root of f(z) = 0.

Proof. Suppose not. Note that $\Phi_n(\zeta^p) = 0$ and ζ is root of $\Phi_n(x)$. So $f(x)|\Phi_n(x)$. So $\Phi_n(x) = f(x)g(x)$. Note $g(x) \in \mathbb{Z}$. Therefore ζ is a root of $g(z^p) = 0$. Since f(z) is the minimal polynomial of ζ , it follows that f(z) divides $g(z^p)$ so that $g(z^p) = f(z)h(z)$ where h(z) is monic with integer coefficients. Also since $\Phi_n(z)$ is a factor of $(z^n - 1)$ so that we have $z^n - 1 = \Phi_n(z)d(z)$ where d(z) is monic and in $\mathbb{Z}[x]$.

$$z^{n} - 1 = f(z)g(z)d(z)$$
$$g(z^{p}) = f(z)h(z)$$

Going mod *p*,

$$g(z^p) = g(z)^p.$$

So any irreducible factor of f(z) will divide $g(z)^p$ and hence g(z). But n is coprime to p. So no repeated roots. Contradiction.

f(z) is the minimal polynomial for $\zeta^{p_1p_2...p_m}$ where $p_1, p_2, ..., p_m$ are any primes not dividing n. It follows that ζ^k where k is coprime to n is also a root of f(z). Thus all the primitive n^{th} roots of unity are roots of f(z) = 0. Hence $\Phi_n(z) = f(z)$.

9 On coefficients of Cyclotomic polynomials

Theorem 9.1. The coefficients of cyclotomic polynomials are palindromic for $n \geq 2$

Proof. This is by induction. For n = 2 it is true. Note that

$$\Phi_2\Big(\frac{1}{x}\Big)x^{\phi(2)} = \Phi_2(x).$$

We will be showing that

$$\forall n \geq 2, \Phi_n\left(\frac{1}{x}\right)x^{\phi(n)} = \Phi_n(x).$$

However,

$$\Phi_n\left(\frac{1}{x}\right)x^{\phi(n)} = \frac{(1/x)^n - 1}{\prod_{d|n,d < n} \Phi_d\left(\frac{1}{x}\right)}x^{\phi(n)}.$$

By induction hypothesis,

$$= \frac{(1/x)^n - 1}{\prod_{d|n,1 < d < n} (\Phi_d(x))(1/x - 1)x} x^n$$

$$= \frac{1 - x^n}{\prod_{d|n,1 < d < n} (\Phi_d(x))(1/x - 1)x}$$

$$= \frac{1 - x^n}{\prod_{d|n,1 < d < n} (\Phi_d(x))(1 - x)}$$

$$= \Phi_n(x).$$

10 Zsigmondy's theorem

Theorem 10.1. Let $a > b \ge 1$ be coprime integers, and let $n \ge 2$. Then there exists a prime divisor of $a^n - b^n$ that does not divide $a^k - b^k$ for all $1 \le k < n$, except when:

- n = 2, and a + b is a power of 2; or
- (a, b, n) = (2, 1, 6).

Example 10.1. Consider (a, b, n) = (4, 2, 3). Then $4^3 - 2^3 = 56, 4^2 - 2^2 = 12, 4^1 - 2^1 = 2$. So one such nice prime would be 7.

Definition. We call such a prime divisor, a **primitive prime divisor** of $a^n - b^n$.

We essentially want to find prime divisors of $a^n - b^n$ which LTE can handle to some extent.

10.1 Lifting the exponent lemma

We state and prove LTE first.

Theorem 10.2. *Let* p *be a prime,* $x, y \in \mathbb{Z}$ *, and* $m \ge 1$ *, such that* $x \equiv y \not\equiv 0 \pmod{p}$ *.*

• *If* $p \ge 3$, then

$$v_p(x^m - y^m) = v_p(x - y) + v_p(m).$$

• If p = 2, then

$$v_2(x^m - y^m) = \begin{cases} v_2(x^2 - y^2) + v_2(\frac{m}{2}) & m \text{ even,} \\ v_2(x - y) & m \text{ odd.} \end{cases}$$

Proof. We will show it for odd primes. For even primes, it is left to the readers. We use induction on $v_p(n)$. We show for $v_p(n) = 0$, $v_p(n) = 1$ and then use induction.

• We show it for $v_p(n) = 0$. That is show $v_p(x^n - y^n) = v_p(x - y)$, for $v_p(n) = 0$. To show this is true, we will show,

$$v_p(\frac{x^n-y^n}{x-y}) = v_p(x^{n-1}+yx^{n-2}+y^2x^{n-3}+\cdots+y^{n-1}) = 0.$$

As $x \equiv y \pmod{p}$, so,

$$x^{n-1} + yx^{n-2} + y^2x^{n-3} + \dots + y^{n-1} \equiv nx^{n-1} \pmod{p}.$$

And $p \nmid nx^{n-1}$

• We show it for $v_p(n) = 1$. That is show $v_p(x^n - y^n) = v_p(x - y) + 1$ To show this is true, we will show,

$$v_p(\frac{x^n-y^n}{x-y}) = v_p(x^{n-1}+yx^{n-2}+y^2x^{n-3}+\cdots+y^{n-1}) = 1.$$

As $x \equiv y \pmod{p} \implies x = y + pk$, so,

$$x^{n-1} + yx^{n-2} + y^2x^{n-3} + \dots + y^{n-1} \pmod{p^2}$$

$$\equiv (pk+y)^{n-1} + (pk+y)^{n-2}y + (pk+y)^{n-3}y^2 + \dots + y^{n-1} \pmod{p^2}$$

$$\equiv (y^{n-1} + pk \cdot (n-1)y^{n-2}) + (y^{n-1} + ypk \cdot (n-2)y^{n-3}) + \dots + y^{n-1} \pmod{p^2}$$

$$\equiv n \cdot y^{n-1} + pky^{n-2} \frac{(n-1)(n)}{2} \pmod{p^2}$$

Since $(n, p^2) = p$. Let n' = n/p.

$$\equiv n' \cdot y^{n-1} + ky^{n-2} \frac{(n-1)(n)}{2} \pmod{p}$$

. We have p odd, so above is equivalent to

$$\equiv n' \cdot y^{n-1}n' \pmod{p}$$

but $p \nmid n', y$. So done!

• Let's assume it's true for $v_p = 0, 1, ..., j - 1$. Now, we will show it's true for $v_p(n) = j$. Then let $n = p^j \cdot c$. Then

$$\begin{split} v_p(x^n - y^n) &= v_p(x^{p^j \cdot c} - y^{p^j \cdot c}) = v_p((x^p)^{p^{j-1} \cdot c} - (y^p)^{p^{j-1} \cdot c}) \\ &= v_p(x^p - y^p) + v_p(p^{j-1} \cdot c) = v_p(x - y) + 1 + j - 1 = v_p(x - y) + v_p(n) \end{split}$$

10.2 The n = 2 case

Theorem 10.3. *If we have a tuple of the form* (a, b, n) = (a, b, 2), (a, b) = 1. *such that it has no primitive divisor then* a + b *is perfect power of* 2.

Proof. If $a^2 - b^2$ has no primitive divisor, then if a prime p divides $a^2 - b^2$ then it also divides a - b. Moreover, if

$$p|a+b \implies p|a^2-b^2 \implies p|a+b \implies p=2 \implies a-b \text{ is a power of 2.}$$

So from now we assume that $n \ge 3$.

10.3 LTE on Cylcotomic prolynomials

Theorem 10.4. Let $p \ge 3$ be a prime such that $p \nmid a, b$. Let $n \ge 1$, and let $k \ge 1$ be minimal such that $p \mid a^k - b^k$. Then

$$v_p(\Phi_n(a,b)) = egin{cases} v_p(a^k - b^k) & n = k \ 1 & n = p^{\beta}k, \ \beta \ge 1 \ 0 & else. \end{cases}$$

Proof. We begin with cases.

Case 1: Note that if k = n then $p \nmid a^n - b^n$. Hence

$$\begin{split} v_p(a^k-b^k) &= v_p(a^n-b^n) &= v_p(\Phi_n(a,b)) + \sum_{d|n,d\neq n} v_p(\Phi_d(a,b)) \\ &= v_p(\Phi_n(a,b)) \end{split}$$

Note that

$$\sum_{d|n,d\neq n} v_p(\Phi_d(a,b)) = 0$$

because of the minimality of k we assumes. If $v_p(\Phi_d(a,b)) > 0$ for some d, then $p|a^d - b^d$. Not possible.

So this proved the first statement.

Case 2: For $n = p^{\beta}k$ then we get

$$\begin{split} v_p(a^k - b^k) + \beta &= v_p(a^{p^\beta k} - b^{p^\beta k}) \\ &= \sum_{d \mid p^\beta k} v_p(\Phi_d(a, b)) \\ &= \sum_{d \mid k} v_p(\Phi_d(a, b)) + v_p(\Phi_{pk}(a, b)) + v_p(\Phi_{p^2 k}(a, b)) + \dots + v_p(\Phi_{p^\beta k}(a, b)) \\ &= v_p(a^k - b^k) + v_p(\Phi_{pk}(a, b)) + v_p(\Phi_{p^2 k}(a, b)) + \dots + v_p(\Phi_{p^\beta k}(a, b)) \\ &\implies \beta = v_p(\Phi_{pk}(a, b)) + v_p(\Phi_{p^2 k}(a, b)) + \dots + v_p(\Phi_{p^\beta k}(a, b)). \end{split}$$

So, this implies $v_p(\Phi_{n^jk}(a,b)) = 1$.

Case 3.1: If $k \nmid n$, then $p \nmid a^n - b^n$. So $p \nmid \Phi_n(a,b) \implies v_p(\Phi_n(a,b)) = 0$.

Case 3.2: If $k \mid n$, then $n = p^{\beta}mk$ for some $p \nmid m$ (so $\beta = v_p(\frac{n}{k})$). We have dealt with the case m = 1. If m > 1 then $\Phi_n(a, b)$ is a factor of

$$\frac{\prod_{d|n} \Phi_d(a,b)}{\prod_{d|p^{\beta_k}} \Phi_d(a,b)} = \frac{a^n - b^n}{a^{p^{\beta_k}} - b^{p^{\beta_k}}}.$$

But note that LTE gives $v_p(a^n-b^n)=v_p(a^{p^{\beta}k}-b^{p^{\beta}k})$, so p does not divide $\Phi_n(a,b)$. So done. \Box

Theorem 10.5 (For p = 2). Let a, b be odd, and $n \ge 1$. Then

$$v_2(\Phi_n(a,b)) = egin{cases} v_2(a-b) & n=1 \ v_2(a+b) & n=2 \ 1 & n=2^{eta}, \, eta \geq 2 \ 0 & else. \end{cases}$$

Left to the readers!

10.4 Final Proof

Suppose that $a^n - b^n$ has no primitive prime divisors.

If $\Phi_n(a, b) > 1$. Let p be a prime factor of $\Phi_n(a, b)$. Then $p \mid a^n - b^n$, so there exists a minimal $1 \le k < n$ such that $p \mid a^k - b^k$. (since we assumed that $a^n - b^n$ has no primitive prime divisor.

Case 1: If $p \ge 3$, since n < k and $p|\Phi_n(a,b)$. We get that $v_p(\Phi_n(a,b)) = 1$. So n is of the forms $p^\beta k$. We also know that k|n and $k|p-1 \implies k < p$. So note that p is the largest prime factor of n. Suppose $q \ne p$ divides $\Phi_n(a,b)$. By similar reasoning, we get that q is the largest primefactor of n. Contradiction as we got p to be the largest prime factor.

Hence $\Phi_n(a, b)$ is p.

Case 2: If p = 2 then $n \ge 3$ is a power of 2, so $4 \mid n$ implies (as $n \ge 3$). So

$$\Phi_n(a,b) = a^{n/2} + b^{n/2} \equiv 2 \pmod{4}.$$

So $v_p(\Phi_n(a,b)) = 1$. So we get

$$p \ge \Phi_n(a,b) \ge (a-b)^{\varphi(n)} \ge (a-b)^{p-1}$$
.

If $a - b \ge 2$, then p = 2 and n = 2.

If a - b = 1, write $n = p^{\beta}k$.

Case 1:If $\beta \geq 2$ then

$$p \ge \Phi_n(a,b) = \Phi_{pk}(a^{p^{\beta-1}}, b^{p^{\beta-1}})$$

$$\ge (a^{p^{\beta-1}} - b^{p^{\beta-1}})^{\varphi(pk)}$$

$$\ge a^p - b^p = (b+1)^p - b^p$$

$$= pb^{p-1} + \dots + 1$$

Not possible.

Case 2: $\beta = 1$, so n = pk. Note $p \nmid k$. Infact k < p.

$$p \ge \Phi_n(a,b) = \frac{\Phi_k(a^p,b^p)}{\Phi_k(a,b)}$$

$$\ge \left(\frac{a^p - b^p}{a+b}\right)^{\varphi(k)}$$

$$\ge \frac{(a^p - b^p)^{\varphi(k)}}{a+b}$$

$$\ge \frac{2^p - 1}{3}.$$

Here, equality can only hold when p = 3 and b = 1 (so a = 2). Also, since k < p, we have $k \in 1, 2, so n \in M$

3, 6. But $2^3 - 1^3$ has 7 as a primitive divisor. Note that $2^6 - 1^6$ has no primitive divisors. Hence we get the exception case.

This concludes the proof of Zsigmondy's theorem.

10.5 Sum version of Zsigmondy

The sum version follows from above

Theorem 10.6. Let $a, b \in \mathbb{N}$ such that (a, b) = 1 and $n \in \mathbb{N}$, n > 1. There exists a prime divisor of $a^n + b^n$ that does not divide $a^k + b^k$, $\forall k \in \{1, ..., n - 1\}$, except $1^3 + 2^3$.

Proof. We use zsigmondy on 2n. We know there exist primitive prime divisor p of $a^{2n} - b^{2n}$. Note $p \mid a^n + b^n$ as $p \nmid a^n - b^n$. Moreover, $p \nmid a^k + b^k \ \forall k < n$ as then $p \mid a^{2k} - b^{2k}$.