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0 Introduction

Just my notes on Cylcotomic polynomials. A lot of references has been used:

• This math stackexchange answer

• MIT lecture notes

• Brett Porter’s Cyclotomic polynomials

• Ramprasad Saptarishi’s scribed Computational Number theory lecture 23 and 24

• Evan’s Orders modulo a prime.

It is also a more refined and self-contained version of Yan Sheng’s blog post, Bart Michels’s
paper and this aops post.

1 Cylcotomic Polynomials

Definition (primitive n-th roots of unity). For n ≥ 1, the primitive n-th roots of unity are the ω ∈ C

such that ωn = 1, and ωk 6= 1 for 1 ≤ k < n. More explicitly, these are given by

e
2πik

n , 1 ≤ k ≤ n, (k, n) = 1.

Note that there are precisely ϕ(n) many primitive n-th roots of unity.

Definition. The n-th cyclotomic polynomial Φn is defined by

Φn(X) := ∏
j
(X−ωj),

where the product is taken over all primitive n-th roots of unity ωj.

Note that the n-th roots of unity are precisely the union of the primitive d-th root of unity for
d | n, so

Xn − 1 = ∏
d|n

Φd(X).

So we also get that
∑
d|n

ϕ(d) = n.

Example 1.1. Here are the first few cyclotomic polynomials:

• Φ1(x) = x− 1

• Φ2(x) = x + 1

• Φ3(x) = x2 + x + 1

• Φ4(x) = x2 + 1

Now, we shall prove some properties about it.

https://math.stackexchange.com/a/532977/736863
https://ocw.mit.edu/courses/18-781-theory-of-numbers-spring-2012/7312c3e8e2dbb9af9a1677425fc3a0e7_MIT18_781S12_lec12.pdf
https://www.cmi.ac.in/~ramprasad/lecturenotes/comp_numb_theory/lecture2324.pdf
https://web.evanchen.cc/handouts/ORPR/ORPR.pdf
https://angyansheng.github.io/blog/an-elementary-proof-of-zsigmondys-theorem
https://math.stackexchange.com/questions/660585/elementary-proof-of-zsigmondys-theorem/662196#662196
https://math.stackexchange.com/questions/660585/elementary-proof-of-zsigmondys-theorem/662196#662196
https://artofproblemsolving.com/community/c1803h1043308_zsigmondys_theorem
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Theorem 1.1. For n ≥ 1, Φn(X) has integer coefficients.

Proof. We induct. For n = 1, we have Φ1(x) = x− 1 ∈ Z[x]. Say Φk(x) ∈ Z[x] for all k < n. Note
that

xn − 1 = ∏
d|n

Φd(x) = Φn(x) ∏
d|n,d 6=n

Φd(x) = Φn(x)pn(x),

where pn(x) = ∏d|n,d 6=n Φd(x). Then pn ∈ Z[X] by induction. Now, we state a claim.

Claim 1.1. If
(xn − 1) = (∑m

i=1aixi)(∑l
j=1bjxi),

where ∑m
i=1aixi ∈ Z[x], then bj ∈ Q, ∀j.

Proof. Note that since am · bl = 1 =⇒ bl ∈ Q. Similarly we can show all the bj lie in Q.

So, by the above claim, we get Φn(x) ∈ Q[x]. Let α be the smallest positive rational such that
αΦn(x) ∈ Z[x]. Note that α must be an integer. Also, note that gcd of the coeffecients of polynomial
αΦn(x) = Φ′n(x) will be 1.

Definition (Primitive Polynomial). Call an integer polynomial primitive if gcd of the coefficents is
1.

Lemma 1.1. Let p(x), q(x) be two primitive polynomials. Then p(x) · q(x) is also primitive.

Proof. Let p(x)q(x) = clxl + · · ·+ c0. Let p(x) = bmxm + · · ·+ b0, q(x) = anxn = · · ·+ a0. Suppose
gcd(cl , . . . , c0) > 1. Then ∃ prime p which divides all the ci. Since p(x) is not primitive, ∃bj such
that p - b′j. So ther must exist a minimal bj such that p - bj. Then p|b0, b1, . . . , bj−1. Consider cj. Since

p|cj =⇒ p|b0aj + b1aj−1 + . . . bja0 =⇒ p|bja0 =⇒ p|a0.

Similarly consider cj+1. Since

p|cj+1 =⇒ p|b0aj+1 + · · ·+ bja1 + bj+1a0 =⇒ p|a1.

Continuing this process, we get that p divides all the coefficients of q(x), contradicting that it is
primitive.

Note that Φ′n(x) and pn(x) are primitive. But note that

Φ′n(x) · pn(x) = α(xn − 1).

By above lemma, we should have α(xn − 1) to be primitive. Hence |α| is 1. And so Φn(x) ∈
Z[x].

Note that these polynomials are also irreducibles.

Proposition 1.1. Let p be a prime and n ≥ 1. Then

Φpn(X) =

{
Φn(Xp) p | n
Φn(Xp)
Φn(X)

p - n.

Proof. If p | n, note that the p-th roots of the primitive n-th roots of unity are the primitive pn-th
roots of unity If p - n, note that the p-th roots of the primitive n-th roots of unity are the union of
the primitive n-th and pn-th roots of unity.
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Proposition 1.2. Let n ≥ 3 and x ∈ (1, ∞). Then

(x− 1)ϕ(n) < Φn(x) < (x + 1)ϕ(n).

Proof. For any primitive n-th root of unity ω, we have |ω| = 1, so by triangle inequality, we get

x− 1 ≤ |x−ω| ≤ x + 1.

Hence taking products over all ω gives

(x− 1)ϕ(n) < |Φn(x)| < (x + 1)ϕ(n).

Note that Φn(x) > 0 for x > 1. So done.

2 Cyclotomic Polynomials for two variables

Now we will see why we are dealing with cyclotomic polynomials.

Definition. Define
Φn(a, b) := bϕ(n)Φn

( a
b

)
.

Note that Φn(a, b) is an integer. Moreover,

∏
d|n

Φn(a, b) = ∏
d|n

bϕ(d)Φd

( a
b

)
= ∏

d|n
bϕ(d) ·∏

d|n
Φd

( a
b

)
= bn

[( a
b

)n
− 1
]

= an − bn.

Similarl to previous sections, the following two propositions follow.

Proposition 2.1. Let p be a prime and n ≥ 1. Then

Φpn(a, b) =

{
Φn(ap, bp) p | n
Φn(ap,bp)
Φn(a,b) p - n.

Proposition 2.2. Let n ≥ 3. Then

(a− b)ϕ(n) < Φn(a, b) < (a + b)ϕ(n).

3 Orders and Cyclotomic Polynomials

Let p ≥ 3 be a prime such that p - a, b. Let n ≥ 1, and let k ≥ 1 be minimal such that p | ak − bk.
Then note that k is order of a/b modulo p. So k|p− 1.

Moreover, note that Φn(a, b)|an − bn.

Theorem 3.1. If p is a prime and Φ(a) ≡ 0 (mod p) =⇒ ordp(a) = n =⇒ p ≡ 1 (mod n) or p|n.
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Proof. Note that

Φn(X)|xn − 1 =⇒ Φn(a)|an − 1 =⇒ p|an − 1 =⇒ ordp(a)|n.

If ordp(a) = n then the first case holds. If ordp(a) < n then ∃k < n such that p|xk− 1 and Φk(a) = 1.
So xn − 1 has a root of multiplicity of atleast 2. So

(nxn−1, xn − 1) 6= 1 in Fp =⇒ p|n.

4 Any subgroup of a mulitiplicative group of a field is cyclic

Lemma 4.1. Let G a finite group with n elements. If for every d | n, #{x ∈ G | xd = 1} ≤ d, then G is
cyclic.

Proof. Fix d | n and consider the set Gd made up of elements of G with order d. Suppose that
Gd 6= ∅, so there exists y ∈ Gd; it is clear that 〈y〉 ⊆ {x ∈ G | xd = 1}. But the subgroup 〈y〉 has
cardinality d, so from the hypothesis we have that 〈y〉 = {x ∈ G | xd = 1}. Therefore Gd is the set
of generators of the cyclic group 〈y〉 of order d, so #Gd = φ(d).

We have proved that Gd is empty or has cardinality φ(d), for every d | n. So we have:

n = #G (4.1)

= ∑
d|n

#Gd (4.2)

≤∑
d|n

φ(d) (4.3)

= n. (4.4)

Therefore #Gd = φ(d) for every d|n. In particular Gn 6= ∅. This proves that G is cyclic.

If G is a finite subgroup of the multiplicative group of a field, then G satisfies the hypothesis
because the polynomial xd − 1 has d roots at most.

5 Roots of unity on Finite fields

Theorem 5.1. Let K(n) be splitting field of xn − 1. The set of all the roots be E(n). K be field of char p. Then:

• if p - n then E(n) is cyclic group of order n.

• if p | n =⇒ n = pem, p - m then K(n) = K(m), E(n) = E(m) and root of xn − 1 are m elements each
occuring with muliplicity pe.

Proof. The second part follows because

xn − 1 = xmpe − 1 = (xm − 1)pe

by frobinious map. The first pat is true because of the following: Note that xn − 1 and nxn have
common factor 1. So no repeating root. The set of roots form a multiplicative group as if α, β ∈ E(n)

then
(αβ−1)n = αnβ−n = 1 =⇒ αβ−1 ∈ E(n).

And any subgroup of a mulitiplicative group of a field is cyclic.
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6 Cyclotomic polynomial on finite fields

Theorem 6.1. Let K = Fp and (p, n) = 1, d = ordn(p), p is prime. Then:

• K(n) is the spliting field of any irreducible factor of Φn(x)

• [K(n) : K] = d

Proof. Let ζ be one primitive root of Φn(x). Note that

ζ ∈ Fpk ⇐⇒ ζ pk
= ζ (as all element of the field satisfy xpk − x = 0)

⇐⇒ ζ pk−1 = 1 ⇐⇒ n|pk − 1 ⇐⇒ pk ≡ 1 mod n.

Note that since d = ordn(p) =⇒ ζ ∈ Fpd but no proper subfield of Fpd . So the minimal
polynomial of ζ has degree d. Same for other primitive roots. So the spliting field K(n) = Fpd and
[K(n) : K] = d.

Let ζ be a primitive- n th root of unity. Note that ζ ∈ Fp when r = p− 1 as all the element of
Fp are roots of xp − x, hence all non zero elements are roots of xp−1 − 1. Let M(x) be the minimal
polynomial of ζ. We claim the following:

Theorem 6.2.
deg(M(x)) = ordr(p).

Proof. Let deg(M(x)) = d. Let the polynomial be a0 + a1x + · · ·+ adxd. Note that

M(ζ) = 0 =⇒ 0 = (M(ζ))p =⇒ (a0 + a1ζ + · · ·+ adζd)p = ap
0 + ap

1 ζ p + · · ·+ ap
dζ pd = a0 + a1ζ + adζd = 0.

M(ζ) = 0 =⇒ M(ζ p) = 0.

Similarly, we get ζ p2
, . . . , ζ pd−1

as the roots. So the minimal polynomial has roots precisely;
ζ, ζ p, ζ p2

, . . . , ζ pd−1
as it is degree d polynomial. So note that ζ pd

= ζ p. All elements of Fpd sat-

isfy the equation xpd − x = 0. (Fpd is the splitting field of this polynomial.) Thus, in particular,

ζ pd
= ζ. So d = ordr(p).

Remark. This proof was in Professor Ramprasad’s scribed notes.

7 On primes dividing Cyclotomic polynomials

Theorem 7.1. Let p - n and m|n. Then Φn(x) and xm − 1 has no common root modulo p.

Proof. Note that Φn(x)|xn − 1 and xm − 1|xn − 1. And xn − 1 has double root modulo p iff (xn −
1, nxn−1) > 1. But p - n.

Theorem 7.2. Let n be a positive integer. There are infinitely many primes congruent to 1 mod n.

Proof. Well, we prove it just like how we prove that there are infinitely many primes. Say there are
finite many primes say p1, p2, . . . , pk. Then consider Φn(knp1, p2, . . . , pk) for big enough k. Note the
none pi|knp1, p2, . . . , pk. So a new prime p divides it. However, note that by theorem 3.1, we get
that p ≡ 1 mod n.
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8 Irreducibility of Cyclotomic polynomials

Let ζ be a primitive nth root of unity and let f (z) be its minimal polynomial. Since ζ is also a root of
zn − 1 = 0, it follows that f (z) divides (zn − 1) and by Gauss Lemma f (z) has integer coefficients.

Theorem 8.1. If p is any prime which does not divide n then ζ p is a root of f (z) = 0.

Proof. Suppose not. Note that Φn(ζ p) = 0 and ζ is root of Φn(x). So f (x)|Φn(x). So Φn(x) =
f (x)g(x). Note g(x) ∈ Z. Therefore ζ is a root of g(zp) = 0. Since f (z) is the minimal polynomial
of ζ, it follows that f (z) divides g(zp) so that g(zp) = f (z)h(z) where h(z) is monic with integer
coefficients.Also since Φn(z) is a factor of (zn − 1) so that we have zn − 1 = Φn(z)d(z) where d(z)
is monic and in Z[x].

zn − 1 = f (z)g(z)d(z)

g(zp) = f (z)h(z)

Going mod p,
g(zp) = g(z)p.

So any irreducible factor of f (z) will divide g(z)p and hence g(z). But n is coprime to p. So no
repeated roots. Contradiction.

f (z) is the minimal polynomial for ζ p1 p2 ...pm where p1, p2, . . . , pm are any primes not dividing n.
It follows that ζk where k is coprime to n is also a root of f (z). Thus all the primitive nth roots of
unity are roots of f (z) = 0. Hence Φn(z) = f (z).

9 On coefficients of Cyclotomic polynomials

Theorem 9.1. The coefficients of cyclotomic polynomials are palindromic for n ≥ 2

Proof. This is by induction. For n = 2 it is true. Note that

Φ2

(1
x

)
xφ(2) = Φ2(x).

We will be showing that

∀n ≥ 2, Φn

(1
x

)
xφ(n) = Φn(x).

However,

Φn

(1
x

)
xφ(n) =

(1/x)n − 1

∏d|n,d<n Φd(
1
x )

xφ(n).

By induction hypothesis,

=
(1/x)n − 1

∏d|n,1<d<n(Φd(x))(1/x− 1)x
xn

=
1− xn

∏d|n,1<d<n(Φd(x))(1/x− 1)x

=
1− xn

∏d|n,1<d<n(Φd(x))(1− x)

= Φn(x).
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10 Zsigmondy’s theorem

Theorem 10.1. Let a > b ≥ 1 be coprime integers, and let n ≥ 2. Then there exists a prime divisor of
an − bn that does not divide ak − bk for all 1 ≤ k < n, except when:

• n = 2, and a + b is a power of 2; or

• (a, b, n) = (2, 1, 6).

Example 10.1. Consider (a, b, n) = (4, 2, 3). Then 43 − 23 = 56, 42 − 22 = 12, 41 − 21 = 2. So one
such nice prime would be 7.

Definition. We call such a prime divisor, a primitive prime divisor of an − bn.

We essentially want to find prime divisors of an − bn which LTE can handle to some extent.

10.1 Lifting the exponent lemma

We state and prove LTE first.

Theorem 10.2. Let p be a prime, x, y ∈ Z, and m ≥ 1, such that x ≡ y 6≡ 0 (mod p).

• If p ≥ 3, then
vp(xm − ym) = vp(x− y) + vp(m).

• If p = 2, then

v2(xm − ym) =

{
v2(x2 − y2) + v2

(m
2

)
m even,

v2(x− y) m odd.

Proof. We will show it for odd primes. For even primes, it is left to the readers. We use induction
on vp(n). We show for vp(n) = 0, vp(n) = 1 and then use induction.

• We show it for vp(n) = 0. That is show vp(xn − yn) = vp(x− y), for vp(n) = 0. To show this
is true, we will show,

vp(
xn − yn

x− y
) = vp(xn−1 + yxn−2 + y2xn−3 + · · ·+ yn−1) = 0.

As x ≡ y (mod p), so,

xn−1 + yxn−2 + y2xn−3 + · · ·+ yn−1 ≡ nxn−1 (mod p).

And p - nxn−1

• We show it for vp(n) = 1. That is show vp(xn − yn) = vp(x− y) + 1 To show this is true, we
will show,

vp(
xn − yn

x− y
) = vp(xn−1 + yxn−2 + y2xn−3 + · · ·+ yn−1) = 1.

As x ≡ y (mod p) =⇒ x = y + pk, so,

xn−1 + yxn−2 + y2xn−3 + · · ·+ yn−1 (mod p2)

≡ (pk + y)n−1 + (pk + y)n−2y + (pk + y)n−3y2 + · · ·+ yn−1 (mod p2)
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≡ (yn−1 + pk · (n− 1)yn−2) + (yn−1 + ypk · (n− 2)yn−3) + · · ·+ yn−1 (mod p2)

≡ n · yn−1 + pkyn−2 (n− 1)(n)
2

(mod p2)

Since (n, p2) = p. Let n′ = n/p.

≡ n′ · yn−1 + kyn−2 (n− 1)(n)
2

(mod p)

. We have p odd, so above is equivalent to

≡ n′ · yn−1n′ (mod p)

but p - n′, y. So done!

• Let’s assume it’s true for vp = 0, 1, . . . , j− 1. Now, we will show it’s true for vp(n) = j. Then
let n = pj · c. Then

vp(xn − yn) = vp(xpj·c − ypj·c) = vp((xp)pj−1·c − (yp)pj−1·c)

= vp(xp − yp) + vp(pj−1 · c) = vp(x− y) + 1 + j− 1 = vp(x− y) + vp(n)

10.2 The n = 2 case

Theorem 10.3. If we have a tuple of the form (a, b, n) = (a, b, 2), (a, b) = 1. such that it has no primitive
divisor then a + b is perfect power of 2.

Proof. If a2 − b2 has no primitive divisor, then if a prime p divides a2 − b2 then it also divides a− b.
Moreover, if

p|a + b =⇒ p|a2 − b2 =⇒ p|a + b =⇒ p = 2 =⇒ a− b is a power of 2.

So from now we assume that n ≥ 3.

10.3 LTE on Cylcotomic prolynomials

Theorem 10.4. Let p ≥ 3 be a prime such that p - a, b. Let n ≥ 1, and let k ≥ 1 be minimal such that
p | ak − bk. Then

vp(Φn(a, b)) =


vp(ak − bk) n = k
1 n = pβk, β ≥ 1
0 else.

Proof. We begin with cases.
Case 1: Note that if k = n then p - an − bn. Hence

vp(ak − bk) = vp(an − bn) = vp(Φn(a, b)) + ∑
d|n, d 6=n

vp(Φd(a, b))

= vp(Φn(a, b))
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Note that

∑
d|n, d 6=n

vp(Φd(a, b)) = 0

because of the minimality of k we assumes. If vp(Φd(a, b)) > 0 for some d, then p|ad − bd. Not
possible.

So this proved the first statement.
Case 2: For n = pβk then we get

vp(ak − bk) + β = vp(apβk − bpβk)

= ∑
d|pβk

vp(Φd(a, b))

= ∑
d|k

vp(Φd(a, b)) + vp(Φpk(a, b)) + vp(Φp2k(a, b)) + · · ·+ vp(Φpβk(a, b))

= vp(ak − bk) + vp(Φpk(a, b)) + vp(Φp2k(a, b)) + · · ·+ vp(Φpβk(a, b))

=⇒ β = vp(Φpk(a, b)) + vp(Φp2k(a, b)) + · · ·+ vp(Φpβk(a, b)).

So, this implies vp(Φpjk(a, b)) = 1.
Case 3.1: If k - n, then p - an − bn. So p - Φn(a, b) =⇒ vp(Φn(a, b)) = 0.
Case 3.2: If k | n, then n = pβmk for some p - m (so β = vp(

n
k )). We have dealt with the case m = 1.

If m > 1 then Φn(a, b) is a factor of

∏d|n Φd(a, b)

∏d|pβk Φd(a, b)
=

an − bn

apβk − bpβk
.

But note that LTE gives vp(an− bn) = vp(apβk− bpβk), so p does not divide Φn(a, b). So done.

Theorem 10.5 (For p = 2). Let a, b be odd, and n ≥ 1. Then

v2(Φn(a, b)) =


v2(a− b) n = 1
v2(a + b) n = 2
1 n = 2β, β ≥ 2
0 else.

Left to the readers!

10.4 Final Proof

Suppose that an − bn has no primitive prime divisors.
If Φn(a, b) > 1. Let p be a prime factor of Φn(a, b). Then p | an − bn, so there exists a minimal

1 ≤ k < n such that p | ak − bk. ( since we assumed that an − bn has no primitive prime divisor.
Case 1: If p ≥ 3, since n < k and p|Φn(a, b). We get that vp(Φn(a, b)) = 1. So n is of the forms

pβk.We also know that k|n and k|p− 1 =⇒ k < p. So note that p is the largest prime factor of n.
Suppose q 6= p divides Φn(a, b). By similar reasoning, we get that q is the largest primefactor of n.
Contradiction as we got p to be the largest prime factor.

Hence Φn(a, b) is p.
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Case 2: If p = 2 then n ≥ 3 is a power of 2, so 4 | n implies ( as n ≥ 3). So

Φn(a, b) = an/2 + bn/2 ≡ 2 (mod 4).

So vp(Φn(a, b)) = 1.
So we get

p ≥ Φn(a, b) ≥ (a− b)ϕ(n) ≥ (a− b)p−1.

If a− b ≥ 2, then p = 2 and n = 2.
If a− b = 1, write n = pβk.
Case 1:If β ≥ 2 then

p ≥ Φn(a, b) = Φpk(apβ−1
, bpβ−1

)

≥ (apβ−1 − bpβ−1
)ϕ(pk)

≥ ap − bp = (b + 1)p − bp

= pbp−1 + · · ·+ 1

Not possible.
Case 2: β = 1, so n = pk. Note p - k. Infact k < p.

p ≥ Φn(a, b) =
Φk(ap, bp)

Φk(a, b)

≥
(

ap − bp

a + b

)ϕ(k)

≥ (ap − bp)ϕ(k)

a + b

≥ 2p − 1
3

.

Here, equality can only hold when p = 3 and b = 1 (so a = 2). Also, since k < p, we have k ∈
1, 2, so n ∈
3, 6. But 23 − 13 has 7 as a primitive divisor. Note that 26 − 16 has no primitive divisors. Hence we
get the exception case.
This concludes the proof of Zsigmondy’s theorem.

10.5 Sum version of Zsigmondy

The sum version follows from above

Theorem 10.6. Let a, b ∈ N such that (a, b) = 1 and n ∈ N, n > 1. There exists a prime divisor of
an + bn that does not divide ak + bk, ∀k ∈ {1, . . . , n− 1}, except 13 + 23.

Proof. We use zsigmondy on 2n. We know there exist primitive prime divisor p of a2n − b2n. Note
p|an + bn as p - an − bn. Moreover, p - ak + bk ∀k < n as then p|a2k − b2k.
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